
ContentsContents

 Text Analytics API Documentation
 Overview

 What is the Text Analytics API?
 Language support
 Pricing
 What's new
 Text Analytics FAQ

 Quickstart
 Samples

 v3.0
 C#
 Python
 Java
 JavaScript

 v3.1
 C#
 Python
 Java
 JavaScript

 Responsible use of AI
 Transparency notes

 For Text Analytics
 For Health
 For Named Entity Recognition (NER) and Personally Identifying Information (PII)
 For Sentiment Analysis
 For Key Phrase Analysis
 For Language Detection

 Integration and responsible use
 Data, privacy, and security

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/index.html#body
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/text-analytics-resource-faq.html#body
https://github.com/Azure/azure-sdk-for-net/tree/Azure.AI.TextAnalytics_5.0.0/sdk/textanalytics/Azure.AI.TextAnalytics/samples
https://github.com/Azure/azure-sdk-for-python/tree/azure-ai-textanalytics_5.0.0_tests/sdk/textanalytics/azure-ai-textanalytics/samples
https://github.com/Azure/azure-sdk-for-java/tree/azure-ai-textanalytics_5.0.0/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/samples
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-health
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-named-entity-recognition
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-sentiment-analysis
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-key-phrase-extraction
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-language-detection
https://docs.microsoft.com/legal/cognitive-services/text-analytics/guidance-integration-responsible-use
https://docs.microsoft.com/legal/cognitive-services/text-analytics/data-privacy


 How-to guides
 Call the Text Analytics API
 Language detection
 Sentiment analysis and opinion mining
 Key phrase extraction
 Named entity recognition and PII
 Text Analytics for health
 Use containers

 Install and run containers
 Configure containers
 Use container instances
 Use kubernetes service (AKS)
 All Cognitive Services containers documentation

 Enterprise readiness
 Set up Virtual Networks
 Use Azure AD authentication

 Migrate to version 3 of the API
 Concepts

 Example user scenarios
 Named entity types
 Unicode encodings and text offsets
 Data limits
 Model versioning

 Tutorials
 Integrate Power BI to analyze customer feedback
 Text Analytics in Power Apps
 Sentiment analysis on streaming data using Azure Databricks
 Use Flask to translate text, analyze sentiment, and synthesize speech
 Extract information in Excel using Power Automate

 Reference
 Text Analytics API

 v3.1

file:///T:/uy1a/ctsj/azure/cognitive-services/containers/index.html#body
https://powerapps.microsoft.com/tutorials/cognitive-services-api/
https://docs.microsoft.com/azure/databricks/scenarios/databricks-sentiment-analysis-cognitive-services
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1


 v3.0
 v2 (Retiring)

 SDKs
 v3.1

 .NET
 Python
 Java
 Node.js

 v3.0
 .NET
 Python
 Java
 Node.js

 v2 (Retiring)
 .NET
 Python
 Java
 Node.js
 Go

 CLI reference
 PowerShell reference

 Resources
 Enterprise readiness

 Region support
 Compliance and certification

 Support and help options
 External and community content

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1
https://docs.microsoft.com/dotnet/api/azure.ai.textanalytics
https://docs.microsoft.com/python/api/azure-ai-textanalytics/azure.ai.textanalytics
https://docs.microsoft.com/java/api/overview/azure/ai-textanalytics-readme
https://docs.microsoft.com/javascript/api/overview/azure/ai-text-analytics-readme
https://docs.microsoft.com/dotnet/api/azure.ai.textanalytics
https://docs.microsoft.com/python/api/azure-ai-textanalytics/azure.ai.textanalytics
https://docs.microsoft.com/java/api/overview/azure/ai-textanalytics-readme
https://docs.microsoft.com/javascript/api/overview/azure/ai-text-analytics-readme
https://docs.microsoft.com/dotnet/api/overview/azure/cognitiveservices/client
https://docs.microsoft.com/python/api/overview/azure/cognitiveservices/textanalytics
https://docs.microsoft.com/java/api/overview/azure/cognitiveservices/client/textanalytics
https://docs.microsoft.com/javascript/api/@azure/cognitiveservices-textanalytics/
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v2.1/textanalytics
https://docs.microsoft.com/cli/azure/cognitiveservices#az_cognitiveservices_list
https://docs.microsoft.com/powershell/module/azurerm.cognitiveservices/
https://azure.microsoft.com/global-infrastructure/services/
https://azure.microsoft.com/support/legal/cognitive-services-compliance-and-privacy/


   

 

What is the Text Analytics API?
 7/8/2021 • 5 minutes to read • Edit Online

 Sentiment analysis

 Key phrase extraction

 Language detection

 Named entity recognition

The Text Analytics API is a cloud-based service that provides Natural Language Processing (NLP) features for text

mining and text analysis, including: sentiment analysis, opinion mining, key phrase extraction, language

detection, and named entity recognition.

The API is a part of Azure Cognitive Services, a collection of machine learning and AI algorithms in the cloud for

your development projects. You can use these features with the REST API version 3.0 or version 3.1, or the client

library.

This documentation contains the following types of articles:

Quickstarts are step-by-step instructions that let you make calls to the service and get results in a short

period of time.

How-to guides contain instructions for using the service in more specific or customized ways.

Concepts provide in-depth explanations of the service's functionality and features.

Tutorials are longer guides that show you how to use this service as a component in broader business

solutions.

Use sentiment analysis (SA) and find out what people think of your brand or topic by mining the text for clues

about positive or negative sentiment.

The feature provides sentiment labels (such as "negative", "neutral" and "positive") based on the highest

confidence score found by the service at a sentence and document-level. This feature also returns confidence

scores between 0 and 1 for each document & sentences within it for positive, neutral and negative sentiment.

You can also be run the service on premises using a container.

Starting in the v3.1, opinion mining (OM) is a feature of Sentiment Analysis. Also known as Aspect-based

Sentiment Analysis in Natural Language Processing (NLP), this feature provides more granular information

about the opinions related to words (such as the attributes of products or services) in text.

Use key phrase extraction (KPE) to quickly identify the main concepts in text. For example, in the text "The food

was delicious and there were wonderful staff", Key Phrase Extraction will return the main talking points: "food"

and "wonderful staff".

Language detection can detect the language an input text is written in and report a single language code for

every document submitted on the request in a wide range of languages, variants, dialects, and some

regional/cultural languages. The language code is paired with a confidence score.

Named Entity Recognition (NER) can Identify and categorize entities in your text as people, places, organizations,

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/overview.md
https://docs.microsoft.com/en-us/azure/cognitive-services/index
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-V3-0/
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1
https://channel9.msdn.com/Shows/AI-Show/Whats-New-in-Text-Analytics-Opinion-Mining-and-Async-API/player?nocookie=true


 Text Analytics for health

 Deploy on premises using Docker containers

 Asynchronous operations

 Typical workflow

 Text Analytics for multiple programming experience levels

quantities, Well-known entities are also recognized and linked to more information on the web.

Text Analytics for health is a feature of the Text Analytics API service that extracts and labels relevant medical

information from unstructured texts such as doctor's notes, discharge summaries, clinical documents, and

electronic health records.

Use Text Analytics containers to deploy API features on-premises. These docker containers enable you to bring

the service closer to your data for compliance, security or other operational reasons. Text Analytics offers the

following containers:

sentiment analysis

key phrase extraction (preview)

language detection (preview)

Text Analytics for health

The /analyze  endpoint enables you to use many features of the Text Analytics API asynchronously. Named

Entity Recognition (NER), Key phrase extraction (KPE), Sentiment Analysis (SA), Opinion Mining (OM) are

available as part of /analyze  endpoint. It allows clubbing of these features in a single call. It allows sending up

to 125,000 characters per document. Pricing is same as regular Text Analytics.

The workflow is simple: you submit data for analysis and handle outputs in your code. Analyzers are consumed

as-is, with no additional configuration or customization.

1. Create an Azure resource for Text Analytics. Afterwards, get the key generated for you to authenticate

your requests.

2. Formulate a request containing your data as raw unstructured text, in JSON.

3. Post the request to the endpoint established during sign-up, appending the desired resource: sentiment

analysis, key phrase extraction, language detection, or named entity recognition.

4. Stream or store the response locally. Depending on the request, results are either a sentiment score, a

collection of extracted key phrases, or a language code.

Output is returned as a single JSON document, with results for each text document you posted, based on ID. You

can subsequently analyze, visualize, or categorize the results into actionable insights.

Data is not stored in your account. Operations performed by the Text Analytics API are stateless, which means

the text you provide is processed and results are returned immediately.

You can start using the Text Analytics API in your processes, even if you don't have much experience in

programming. Use these tutorials to learn how you can use the API to analyze text in different ways to fit your

experience level.

Minimal programming required:

Extract information in Excel using Text Analytics and Power Automate



 Supported languages

 Data limits

 Unicode encoding

 Next steps

Programming experience recommended:

Use the Text Analytics API and MS Flow to identify the sentiment of comments in a Yammer group

Integrate Power BI with the Text Analytics API to analyze customer feedback

Sentiment analysis on streaming data using Azure Databricks

Build a Flask app to translate text, analyze sentiment, and synthesize speech

 

This section has been moved to a separate article for better discoverability. Refer to Supported languages in the

Text Analytics API for this content.

 

All of the Text Analytics API endpoints accept raw text data. See the Data limits article for more information.

The Text Analytics API uses Unicode encoding for text representation and character count calculations. Requests

can be submitted in both UTF-8 and UTF-16 with no measurable differences in the character count. Unicode

codepoints are used as the heuristic for character length and are considered equivalent for the purposes of text

analytics data limits. If you use StringInfo.LengthInTextElements  to get the character count, you are using the

same method we use to measure data size.

Create an Azure resource for Text Analytics to get a key and endpoint for your applications.

Use the quickstart to start sending API calls. Learn how to submit text, choose an analysis, and view

results with minimal code.

See what's new in the Text Analytics API for information on new releases and features.

Dig in a little deeper with this sentiment analysis tutorial using Azure Databricks.

Check out our list of blog posts and more videos on how to use the Text Analytics API with other tools

and technologies in our External & Community Content page.

https://docs.microsoft.com/en-us/yammer/integrate-yammer-with-other-apps/sentiment-analysis-flow-azure?bc=%252f%252fazure%252fbread%252ftoc.json&toc=%252f%252fazure%252fcognitive-services%252ftext-analytics%252ftoc.json
https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-sentiment-analysis-cognitive-services?bc=%252f%252fazure%252fbread%252ftoc.json&toc=%252f%252fazure%252fcognitive-services%252ftext-analytics%252ftoc.json
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.lengthintextelements
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-sentiment-analysis-cognitive-services


   

 

Text Analytics API v3 language support
 7/8/2021 • 6 minutes to read • Edit Online

 

 

NOTENOTE

L A N GUA GEL A N GUA GE L A N GUA GE C O DEL A N GUA GE C O DE V3 SUP P O RTV3 SUP P O RT
STA RT IN G V3 M O DELSTA RT IN G V3 M O DEL
VERSIO N :VERSIO N : N OT ESN OT ES

Chinese-Simplified zh-hans ✓ 2019-10-01 zh  also accepted

Chinese-Traditional zh-hant ✓ 2019-10-01

Dutch nl ✓ 2019-10-01

English en ✓ 2019-10-01

French fr ✓ 2019-10-01

German de ✓ 2019-10-01

Hindi hi ✓ 2020-04-01

Italian it ✓ 2019-10-01

Japanese ja ✓ 2019-10-01

Korean ko ✓ 2019-10-01

Norwegian (Bokmål) no ✓ 2020-04-01

Portuguese (Brazil) pt-BR ✓ 2020-04-01

Portuguese
(Portugal)

pt-PT ✓ 2019-10-01 pt  also accepted

Sentiment Analysis

Named Entity Recognition (NER)

Key Phrase Extraction

Entity Linking

Text Analytics for health

Personally Identifiable Information (PII)

Language Detection

Languages are added as new model versions are released for specific Text Analytics features. The current model version for

Sentiment Analysis is 2020-04-01 .

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/language-support.md


Spanish es ✓ 2019-10-01

Turkish tr ✓ 2020-04-01

L A N GUA GEL A N GUA GE L A N GUA GE C O DEL A N GUA GE C O DE V3 SUP P O RTV3 SUP P O RT
STA RT IN G V3 M O DELSTA RT IN G V3 M O DEL
VERSIO N :VERSIO N : N OT ESN OT ES

  Opinion mining (v3.1 only)Opinion mining (v3.1 only)

L A N GUA GEL A N GUA GE L A N GUA GE C O DEL A N GUA GE C O DE
STA RT IN G W IT H  V3 M O DELSTA RT IN G W IT H  V3 M O DEL
VERSIO N :VERSIO N : N OT ESN OT ES

English en 2020-04-01

 See also
What is the Text Analytics API?

Model versions



   

 

What's new in the Text Analytics API?
 7/12/2021 • 9 minutes to read • Edit Online

 July 2021
  GA release updatesGA release updates

 June 2021
  General API updatesGeneral API updates

  Text Analytics for health updatesText Analytics for health updates

 May 2021

  General API updatesGeneral API updates

The Text Analytics API is updated on an ongoing basis. To stay up-to-date with recent developments, this article

provides you with information about new releases and features.

General availability for Text Analytics for health for both containers and hosted API (/health).

General availability for Opinion Mining.

General availability for PII extraction and redaction.

General availability for Asynchronous ( /analyze ) endpoint.

Updated quickstart examples with new SDK.

New model-version 2021-06-01  for key phrase extraction based on transformers. It provides:

The 2021-06-01  model version for Named Entity Recognition v3.x, which provides

Asynchronous (/analyze) operation and Text Analytics for health (ungated preview) is available in all regions.

Support for 10 languages (Latin and CJK).

Improved key phrase extraction.

Improved AI quality and expanded language support for the Skill entity category.

Added Spanish, French, German, Italian and Portuguese language support for the Skill entity category

You no longer need to apply for access to preview Text Analytics for health.

A new model version 2021-05-15  for the /health  endpoint and on-premise container which provides

A new image for the Text Analytics for health container with tag 3.0.016230002-onprem-amd64  and model

version 2021-05-15 . This container is available for download from Microsoft Container Registry.

5 new entity types: ALLERGEN , CONDITION_SCALE , COURSE , EXPRESSION  and MUTATION_TYPE ,

14 new relation types,

Assertion detection expanded for new entity types and

Linking support for ALLERGEN entity type

Custom question answering (previously QnA maker) can now be accessed using a Text Analytics resource.

Release of the new API v3.1-preview.5 which includes

Text Analytics for health and the Analyze asynchronous operations are now available in all regions

Asynchronous Analyze API now supports Sentiment Analysis (SA) and Opinion Mining (OM).

A new query parameter, LoggingOptOut , is now available for customers who wish to opt out of logging

input text for incident reports. Learn more about this parameter in the data privacy article.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/whats-new.md
https://docs.microsoft.com/en-us/azure/cognitive-services/qnamaker/custom-question-answering
https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/data-privacy?context=/azure/cognitive-services/text-analytics/context/context


 March 2021
  General API updatesGeneral API updates

  Text Analytics for health updatesText Analytics for health updates

  Text Analytics resource portal updateText Analytics resource portal update

 February 2021

Release of the new API v3.1-preview.4 which includes

Changes in the Opinion Mining JSON response body:

Changes in the JSON response body of the hosted web API of Text Analytics for health:

Entity linking is now available as an asynchronous task in the /analyze  endpoint.

A new pii-categories  parameter is now available in the /pii  endpoint.

aspects  is now targets  and opinions  is now assessments .

The isNegated  boolean name of a detected entity object for Negation is deprecated and

replaced by Assertion Detection.

A new property called role  is now part of the extracted relation between an attribute and an

entity as well as the relation between entities. This adds specificity to the detected relation type.

This parameter lets you specify select PII entities as well as those not supported by default for

the input language.

Updated client libraries, which include asynchronous Analyze, and Text Analytics for health operations.

You can find examples on GitHub:

C#

Python

Java

JavaScript

Learn more about Text Analytics API v3.1-Preview.4

A new model version 2021-03-01  for the /health  endpoint and on-premise container which provides

A new container image with tag 3.0.015490002-onprem-amd64  and the new model-version 2021-03-01  has

been released to the container preview repository.

A new Text Analytics for health container image with this same model-version is now available at 

mcr.microsoft.com/azure-cognitive-services/textanalytics/healthcare . Starting April 26th, you will only be

able to download the container from this repository.

A rename of the Gene  entity type to GeneOrProtein .

A new Date  entity type.

Assertion detection which replaces negation detection (only available in API v3.1-preview.4).

A new preferred name  property for linked entities that is normalized from various ontologies and

coding systems (only available in API v3.1-preview.4).

This container image will no longer be available for download from containerpreview.azurecr.io  after

April 26th, 2021.

Learn more about Text Analytics for health

Processed Text RecordsProcessed Text Records  is now available as a metric in the Monitor ingMonitor ing section for your Text Analytics

resource in the Azure portal.

The 2021-01-15  model version for the PII endpoint in Named Entity Recognition v3.1-preview.x, which

provides

https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples/v5/javascript
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-4/operations/Languages


 January 2021

 December 2020

 November 2020

 October 2020

 

The S0 through S4 pricing tiers are being retired on March 8th, 2021. If you have an existing Text Analytics

resource using the S0 through S4 pricing tier, you should update it to use the Standard (S) pricing tier.

The language detection container is now generally available.

v2.1 of the API is being retired.

Expanded support for 9 new languages

Improved AI quality of named entity categories for supported languages.

The 2021-01-15  model version for Named Entity Recognition v3.x, which provides

Expanded language support for several general entity categories.

Improved AI quality of general entity categories for all supported v3 languages.

The 2021-01-05  model version for language detection, which provides additional language support.

These model versions are currently unavailable in the East US region.

Learn more about about the new NER model

Updated pricing details for the Text Analytics API.

A new endpoint with Text Analytics API v3.1-preview.3 for the new asynchronous Analyze API, which

supports batch processing for NER, PII, and key phrase extraction operations.

A new endpoint with Text Analytics API v3.1-preview.3 for the new asynchronous Text Analytics for health

hosted API with support for batch processing.

Both new features listed above are only available in the following regions: West US 2 , East US 2 , 

Central US , North Europe  and West Europe  regions.

Portuguese (Brazil) pt-BR  is now supported in Sentiment Analysis v3.x, starting with model version 

2020-04-01 . It adds to the existing pt-PT  support for Portuguese.

Updated client libraries, which include asynchronous Analyze, and Text Analytics for health operations.

You can find examples on GitHub:

C#

Python

Java

Learn more about Text Analytics API v3.1-Preview.3

Hindi support for Sentiment Analysis v3.x, starting with model version 2020-04-01 .

Model version 2020-09-01  for the v3 /languages endpoint, which adds increased language detection and

accuracy improvements.

v3 availability in Central India and UAE North.

https://azure.microsoft.com/updates/text-analytics-ner-improved-ai-quality
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-3/operations/Analyze
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-3/operations/Health
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-3/operations/Languages


September 2020
  General API updatesGeneral API updates

  Text Analytics for health container updatesText Analytics for health container updates

 August 2020
  General API updatesGeneral API updates

  Text Analytics for health container updatesText Analytics for health container updates

Release of a new URL for the Text Analytics v3.1 public preview to support updates to the following Named

Entity Recognition v3 endpoints:

The following Text Analytics preview API endpoints were retired on September 4th, 2020:

/pii  endpoint now includes the new redactedText  property in the response JSON where detected

PII entities in the input text are replaced by an *  for each character of those entities.

/linking  endpoint now includes the bingID  property in the response JSON for linked entities.

v2.1-preview

v3.0-preview

v3.0-preview.1

Learn more about Text Analytics API v3.1-Preview.2

The following updates are specific to the September release of the Text Analytics for health container only.

A new container image with tag 1.1.013530001-amd64-preview  with the new model-version 2020-09-03  has

been released to the container preview repository.

This model version provides improvements in entity recognition, abbreviation detection, and latency

enhancements.

Learn more about Text Analytics for health

Model version 2020-07-01  for the v3 /keyphrases , /pii  and /languages  endpoints, which adds:

An HTTP 400 error will now be returned for v3 API requests that exceed the published data limits.

Endpoints that return an offset now support the optional stringIndexType  parameter, which adjusts the

returned offset  and length  values to match a supported string index scheme.

Additional government and country specific entity categories for Named Entity Recognition.

Norwegian and Turkish support in Sentiment Analysis v3.

The following updates are specific to the August release of the Text Analytics for health container only.

New model-version for Text Analytics for health: 2020-07-24

New URL for sending Text Analytics for health requests: 

http://<serverURL>:5000/text/analytics/v3.2-preview.1/entities/health  (Please note that a browser cache

clearing will be needed in order to use the demo web app included in this new container image)

The following properties in the JSON response have changed:

type  has been renamed to category

score  has been renamed to confidenceScore

Entities in the category  field of the JSON output are now in pascal case. The following entities have been

renamed:

EXAMINATION_RELATION  has been renamed to RelationalOperator .

EXAMINATION_UNIT  has been renamed to MeasurementUnit .

EXAMINATION_VALUE  has been renamed to MeasurementValue .



 July 2020
  Text Analytics for health container - Public gated previewText Analytics for health container - Public gated preview

 May 2020
  Text Analytics API v3 General AvailabilityText Analytics API v3 General Availability

ROUTE_OR_MODE  has been renamed MedicationRoute .

The relational entity ROUTE_OR_MODE_OF_MEDICATION  has been renamed to RouteOfMedication .

The following entities have been added:

NER

AdministrativeEvent

CareEnvironment

HealthcareProfession

MedicationForm

Relation extraction

DirectionOfCondition

DirectionOfExamination

DirectionOfTreatment

Learn more about Text Analytics for health container

The Text Analytics for health container is now in public gated preview, which lets you extract information from

unstructured English-language text in clinical documents such as: patient intake forms, doctor's notes, research

papers and discharge summaries. Currently, you will not be billed for Text Analytics for health container usage.

The container offers the following features:

Named Entity Recognition

Relation extraction

Entity linking

Negation

Text Analysis API v3 is now generally available with the following updates:

Model version 2020-04-01

New data limits for each feature

Updated language support for Sentiment Analysis (SA) v3

Separate endpoint for Entity Linking

New "Address" entity category in Named Entity Recognition (NER) v3.

New subcategories in NER v3:

Location - Geographical

Location - Structural

Organization - Stock Exchange

Organization - Medical

Organization - Sports

Event - Cultural

Event - Natural

Event - Sports



  Text Analytics API v3.1 Public PreviewText Analytics API v3.1 Public Preview

 February 2020
  SDK support for Text Analytics API v3 Public PreviewSDK support for Text Analytics API v3 Public Preview

  Named Entity Recognition v3 public previewNamed Entity Recognition v3 public preview

The following properties in the JSON response have been added:

SentenceText  in Sentiment Analysis

Warnings  for each document

The names of the following properties in the JSON response have been changed, where applicable:

score  has been renamed to confidenceScore

type  has been renamed to category

subtype  has been renamed to subcategory

confidenceScore  has two decimal points of precision.

Learn more about Text Analytics API v3

New Sentiment Analysis feature - Opinion Mining

New Personal ( PII ) domain filter for protected health information ( PHI ).

Learn more about Text Analytics API v3.1 Preview

As part of the unified Azure SDK release, the Text Analytics API v3 SDK is now available as a public preview for

the following programming languages:

C#

Python

JavaScript (Node.js)

Java

Learn more about Text Analytics API v3 SDK

Additional entity types are now available in the Named Entity Recognition (NER) v3 public preview service as we

expand the detection of general and personal information entities found in text. This update introduces model

version 2020-02-01 , which includes:

Recognition of the following general entity types (English only):

PersonType

Product

Event

Geopolitical Entity (GPE) as a subtype under Location

Skill

Recognition of the following personal information entity types (English only):

Person

Organization

Age as a subtype under Quantity

Date as a subtype under DateTime

Email

Phone Number (US only)

URL

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0/operations/Languages
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-1/operations/Languages
https://techcommunity.microsoft.com/t5/azure-sdk/january-2020-unified-azure-sdk-release/ba-p/1097290


  October 2019October 2019
  Named Entity Recognition (NER)Named Entity Recognition (NER)

  Sentiment Analysis v3 public previewSentiment Analysis v3 public preview

 Next steps

IP Address

A new endpoint for recognizing personal information entity types (English only)

Separate endpoints for entity recognition and entity linking.

Model version 2019-10-01 , which includes:

Expanded detection and categorization of entities found in text.

Recognition of the following new entity types:

Phone number

IP address

Entity linking supports English and Spanish. NER language support varies by the entity type.

A new endpoint for analyzing sentiment.

Model version 2019-10-01 , which includes:

Significant improvements in the accuracy and detail of the API's text categorization and scoring.

Automatic labeling for different sentiments in text.

Sentiment analysis and output on a document and sentence level.

It supports English ( en ), Japanese ( ja ), Chinese Simplified ( zh-Hans ), Chinese Traditional ( zh-Hant ), French (

fr ), Italian ( it ), Spanish ( es ), Dutch ( nl ), Portuguese ( pt ), and German ( de ), and is available in the

following regions: Australia East , Central Canada , Central US , East Asia , East US , East US 2 , 

North Europe , Southeast Asia , South Central US , UK South , West Europe , and West US 2 .

Learn more about Sentiment Analysis v3

What is the Text Analytics API?

Example user scenarios

Sentiment analysis

Language detection

Entity recognition

Key phrase extraction

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/EntitiesRecognitionPii
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/EntitiesRecognitionGeneral
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/EntitiesLinking
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/Sentiment


   

 

Quickstart: Use the Text Analytics client library and
REST API

 7/9/2021 • 77 minutes to read • Edit Online

IMPORTANTIMPORTANT

 

 

 Prerequisites

 Setting up
  Create a new .NET Core applicationCreate a new .NET Core application

 

Use this article to get started with the Text Analytics client library and REST API. Follow these steps to try out

examples code for mining text:

Sentiment analysis

Opinion mining

Language detection

Entity recognition

Personal Identifying Information recognition

Key phrase extraction

The latest stable version of the Text Analytics API is 3.1 .

The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For

production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See

the reference documentation below.

If you want to use Text Analytics for health or Asynchronous operations, see the examples on Github for C#, Python or

Java

Be sure to only follow the instructions for the version you are using.

 

Version 3.1

Version 3.0

v3.1 Reference documentation | v3.1 Library source code | v3.1 Package (NuGet) | v3.1 Samples

Azure subscription - Create one for free

The Visual Studio IDE

Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key

and endpoint. After it deploys, click Go to resourceGo to resource.

To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

You will need the key and endpoint from the resource you create to connect your application to the

Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

You can use the free pricing tier ( F0 ) to try the service, and upgrade later to a paid tier for production.

Using the Visual Studio IDE, create a new .NET Core console app. This will create a "Hello World" project with a

single C# source file: program.cs.

Version 3.1

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/quickstarts/client-libraries-rest-api.md
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://docs.microsoft.com/en-us/dotnet/api/azure.ai.textanalytics?preserve-view=true&view=azure-dotnet-preview
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://www.nuget.org/packages/Azure.AI.TextAnalytics/5.1.0
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples
https://azure.microsoft.com/free/cognitive-services
https://visualstudio.microsoft.com/vs/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics


 

 

 

using Azure;
using System;
using System.Globalization;
using Azure.AI.TextAnalytics;

IMPORTANTIMPORTANT

private static readonly AzureKeyCredential credentials = new AzureKeyCredential("<replace-with-your-text-
analytics-key-here>");
private static readonly Uri endpoint = new Uri("<replace-with-your-text-analytics-endpoint-here>");

static void Main(string[] args)
{
    var client = new TextAnalyticsClient(endpoint, credentials);
    // You will implement these methods later in the quickstart.
    SentimentAnalysisExample(client);
    SentimentAnalysisWithOpinionMiningExample(client);
    LanguageDetectionExample(client);
    EntityRecognitionExample(client);
    EntityLinkingExample(client);
    RecognizePIIExample(client);
    KeyPhraseExtractionExample(client);

    Console.Write("Press any key to exit.");
    Console.ReadKey();
}

 Object model

Version 3.1

Version 3.0

Install the client library by right-clicking on the solution in the Solution ExplorerSolution Explorer  and selecting ManageManage

NuGet PackagesNuGet Packages . In the package manager that opens select BrowseBrowse and search for Azure.AI.TextAnalytics .

Select version 5.1.0 , and then InstallInstall . You can also use the Package Manager Console.

Version 3.1

Version 3.0

Open the program.cs file and add the following using  directives:

In the application's Program  class, create variables for your resource's key and endpoint.

Go to the Azure portal. If the Text Analytics resource you created in the PrerequisitesPrerequisites  section deployed successfully, click

the Go to ResourceGo to Resource button under Next StepsNext Steps . You can find your key and endpoint in the resource's key andkey and

endpointendpoint  page, under resource managementresource management .

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

Replace the application's Main  method. You will define the methods called here later.

The Text Analytics client is a TextAnalyticsClient  object that authenticates to Azure using your key, and provides

functions to accept text as single strings or as a batch. You can send text to the API synchronously, or

asynchronously. The response object will contain the analysis information for each document you send.

If you're using version 3.x  of the service, you can use an optional TextAnalyticsClientOptions  instance to

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-powershell#find-and-install-a-package
https://docs.microsoft.com/en-us/azure/key-vault/general/overview


 Code examples

 Authenticate the client
 

 

var client = new TextAnalyticsClient(endpoint, credentials);

 Sentiment analysis
 

 

static void SentimentAnalysisExample(TextAnalyticsClient client)
{
    string inputText = "I had the best day of my life. I wish you were there with me.";
    DocumentSentiment documentSentiment = client.AnalyzeSentiment(inputText);
    Console.WriteLine($"Document sentiment: {documentSentiment.Sentiment}\n");

    foreach (var sentence in documentSentiment.Sentences)
    {
        Console.WriteLine($"\tText: \"{sentence.Text}\"");
        Console.WriteLine($"\tSentence sentiment: {sentence.Sentiment}");
        Console.WriteLine($"\tPositive score: {sentence.ConfidenceScores.Positive:0.00}");
        Console.WriteLine($"\tNegative score: {sentence.ConfidenceScores.Negative:0.00}");
        Console.WriteLine($"\tNeutral score: {sentence.ConfidenceScores.Neutral:0.00}\n");
    }
}

  OutputOutput

initialize the client with various default settings (for example default language or country/region hint). You can

also authenticate using an Azure Active Directory token.

Sentiment analysis

Opinion mining

Language detection

Named Entity Recognition

Entity linking

Key phrase extraction

Version 3.1

Version 3.0

Make sure your main method from earlier creates a new client object with your endpoint and credentials.

Version 3.1

Version 3.0

Create a new function called SentimentAnalysisExample()  that takes the client that you created earlier, and call its

AnalyzeSentiment()  function. The returned Response<DocumentSentiment>  object will contain the sentiment label

and score of the entire input document, as well as a sentiment analysis for each sentence if successful. If there

was an error, it will throw a RequestFailedException .



Document sentiment: Positive

        Text: "I had the best day of my life."
        Sentence sentiment: Positive
        Positive score: 1.00
        Negative score: 0.00
        Neutral score: 0.00

        Text: "I wish you were there with me."
        Sentence sentiment: Neutral
        Positive score: 0.21
        Negative score: 0.02
        Neutral score: 0.77

 Opinion mining
Create a new function called SentimentAnalysisWithOpinionMiningExample()  that takes the client that you created

earlier, and call its AnalyzeSentimentBatch()  function with IncludeOpinionMining  option in the 

AnalyzeSentimentOptions  bag. The returned AnalyzeSentimentResultCollection  object will contain the collection

of AnalyzeSentimentResult  in which represents Response<DocumentSentiment> . The difference between 

SentimentAnalysis()  and SentimentAnalysisWithOpinionMiningExample()  is that the latter will contain 

SentenceOpinion  in each sentence, which shows an analyzed target and the related assessment(s). If there was

an error, it will throw a RequestFailedException .



static void SentimentAnalysisWithOpinionMiningExample(TextAnalyticsClient client)
{
    var documents = new List<string>
    {
        "The food and service were unacceptable, but the concierge were nice."
    };

    AnalyzeSentimentResultCollection reviews = client.AnalyzeSentimentBatch(documents, options: new 
AnalyzeSentimentOptions()
    {
        IncludeOpinionMining = true
    });

    foreach (AnalyzeSentimentResult review in reviews)
    {
        Console.WriteLine($"Document sentiment: {review.DocumentSentiment.Sentiment}\n");
        Console.WriteLine($"\tPositive score: {review.DocumentSentiment.ConfidenceScores.Positive:0.00}");
        Console.WriteLine($"\tNegative score: {review.DocumentSentiment.ConfidenceScores.Negative:0.00}");
        Console.WriteLine($"\tNeutral score: {review.DocumentSentiment.ConfidenceScores.Neutral:0.00}\n");
        foreach (SentenceSentiment sentence in review.DocumentSentiment.Sentences)
        {
            Console.WriteLine($"\tText: \"{sentence.Text}\"");
            Console.WriteLine($"\tSentence sentiment: {sentence.Sentiment}");
            Console.WriteLine($"\tSentence positive score: {sentence.ConfidenceScores.Positive:0.00}");
            Console.WriteLine($"\tSentence negative score: {sentence.ConfidenceScores.Negative:0.00}");
            Console.WriteLine($"\tSentence neutral score: {sentence.ConfidenceScores.Neutral:0.00}\n");

            foreach (SentenceOpinion sentenceOpinion in sentence.Opinions)
            {
                Console.WriteLine($"\tTarget: {sentenceOpinion.Target.Text}, Value: 
{sentenceOpinion.Target.Sentiment}");
                Console.WriteLine($"\tTarget positive score: 
{sentenceOpinion.Target.ConfidenceScores.Positive:0.00}");
                Console.WriteLine($"\tTarget negative score: 
{sentenceOpinion.Target.ConfidenceScores.Negative:0.00}");
                foreach (AssessmentSentiment assessment in sentenceOpinion.Assessments)
                {
                    Console.WriteLine($"\t\tRelated Assessment: {assessment.Text}, Value: 
{assessment.Sentiment}");
                    Console.WriteLine($"\t\tRelated Assessment positive score: 
{assessment.ConfidenceScores.Positive:0.00}");
                    Console.WriteLine($"\t\tRelated Assessment negative score: 
{assessment.ConfidenceScores.Negative:0.00}");
                }
            }
        }
        Console.WriteLine($"\n");
    }
}

  OutputOutput



Document sentiment: Positive

        Positive score: 0.84
        Negative score: 0.16
        Neutral score: 0.00

        Text: "The food and service were unacceptable, but the concierge were nice."
        Sentence sentiment: Positive
        Sentence positive score: 0.84
        Sentence negative score: 0.16
        Sentence neutral score: 0.00

        Target: food, Value: Negative
        Target positive score: 0.01
        Target negative score: 0.99
                Related Assessment: unacceptable, Value: Negative
                Related Assessment positive score: 0.01
                Related Assessment negative score: 0.99
        Target: service, Value: Negative
        Target positive score: 0.01
        Target negative score: 0.99
                Related Assessment: unacceptable, Value: Negative
                Related Assessment positive score: 0.01
                Related Assessment negative score: 0.99
        Target: concierge, Value: Positive
        Target positive score: 1.00
        Target negative score: 0.00
                Related Assessment: nice, Value: Positive
                Related Assessment positive score: 1.00
                Related Assessment negative score: 0.00

Press any key to exit.

 Language detection
 

 

TIPTIP

static void LanguageDetectionExample(TextAnalyticsClient client)
{
    DetectedLanguage detectedLanguage = client.DetectLanguage("Ce document est rédigé en Français.");
    Console.WriteLine("Language:");
    Console.WriteLine($"\t{detectedLanguage.Name},\tISO-6391: {detectedLanguage.Iso6391Name}\n");
}

  OutputOutput

Version 3.1

Version 3.0

Create a new function called LanguageDetectionExample()  that takes the client that you created earlier, and call its

DetectLanguage()  function. The returned Response<DetectedLanguage>  object will contain the detected language

along with its name and ISO-6391 code. If there was an error, it will throw a RequestFailedException .

In some cases it may be hard to disambiguate languages based on the input. You can use the countryHint  parameter

to specify a 2-letter country/region code. By default the API is using the "US" as the default countryHint, to remove this

behavior you can reset this parameter by setting this value to empty string countryHint = "" . To set a different default,

set the TextAnalyticsClientOptions.DefaultCountryHint  property and pass it during the client's initialization.



Language:
        French, ISO-6391: fr

 Named Entity Recognition (NER)
 

 

static void EntityRecognitionExample(TextAnalyticsClient client)
{
    var response = client.RecognizeEntities("I had a wonderful trip to Seattle last week.");
    Console.WriteLine("Named Entities:");
    foreach (var entity in response.Value)
    {
        Console.WriteLine($"\tText: {entity.Text},\tCategory: {entity.Category},\tSub-Category: 
{entity.SubCategory}");
        Console.WriteLine($"\t\tScore: {entity.ConfidenceScore:F2},\tLength: {entity.Length},\tOffset: 
{entity.Offset}\n");
    }
}

  OutputOutput

Named Entities:
        Text: trip,     Category: Event,        Sub-Category:
                Score: 0.61,    Length: 4,      Offset: 18

        Text: Seattle,  Category: Location,     Sub-Category: GPE
                Score: 0.82,    Length: 7,      Offset: 26

        Text: last week,        Category: DateTime,     Sub-Category: DateRange
                Score: 0.80,    Length: 9,      Offset: 34

 Personally Identifiable Information (PII) recognition

Version 3.1

Version 3.0

Create a new function called EntityRecognitionExample()  that takes the client that you created earlier, call its 

RecognizeEntities()  function and iterate through the results. The returned 

Response<CategorizedEntityCollection>  object will contain the collection of detected entities CategorizedEntity .

If there was an error, it will throw a RequestFailedException .

Create a new function called RecognizePIIExample()  that takes the client that you created earlier, call its 

RecognizePiiEntities()  function and iterate through the results. The returned PiiEntityCollection  represents

the list of detected PII entities. If there was an error, it will throw a RequestFailedException .



static void RecognizePIIExample(TextAnalyticsClient client)
{
    string document = "A developer with SSN 859-98-0987 whose phone number is 800-102-1100 is building tools 
with our APIs.";

    PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;

    Console.WriteLine($"Redacted Text: {entities.RedactedText}");
    if (entities.Count > 0)
    {
        Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
        foreach (PiiEntity entity in entities)
        {
            Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: 
{entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
        }
    }
    else
    {
        Console.WriteLine("No entities were found.");
    }
}

  OutputOutput

Redacted Text: A developer with SSN *********** whose phone number is ************ is building tools with 
our APIs.
Recognized 2 PII entities:
Text: 859-98-0987, Category: U.S. Social Security Number (SSN), SubCategory: , Confidence score: 0.65
Text: 800-102-1100, Category: Phone Number, SubCategory: , Confidence score: 0.8

 Entity linking
 

 

Version 3.1

Version 3.0

Create a new function called EntityLinkingExample()  that takes the client that you created earlier, call its 

RecognizeLinkedEntities()  function and iterate through the results. The returned 

Response<LinkedEntityCollection>  object will contain the collection of detected entities LinkedEntity . If there

was an error, it will throw a RequestFailedException . Since linked entities are uniquely identified, occurrences of

the same entity are grouped under a LinkedEntity  object as a list of LinkedEntityMatch  objects.



static void EntityLinkingExample(TextAnalyticsClient client)
{
    var response = client.RecognizeLinkedEntities(
        "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, " +
        "to develop and sell BASIC interpreters for the Altair 8800. " +
        "During his career at Microsoft, Gates held the positions of chairman, " +
        "chief executive officer, president and chief software architect, " +
        "while also being the largest individual shareholder until May 2014.");
    Console.WriteLine("Linked Entities:");
    foreach (var entity in response.Value)
    {
        Console.WriteLine($"\tName: {entity.Name},\tID: {entity.DataSourceEntityId},\tURL: 
{entity.Url}\tData Source: {entity.DataSource}");
        Console.WriteLine("\tMatches:");
        foreach (var match in entity.Matches)
        {
            Console.WriteLine($"\t\tText: {match.Text}");
            Console.WriteLine($"\t\tScore: {match.ConfidenceScore:F2}");
            Console.WriteLine($"\t\tLength: {match.Length}");
            Console.WriteLine($"\t\tOffset: {match.Offset}\n");
        }
    }
}

  OutputOutput



Linked Entities:
        Name: Microsoft,        ID: Microsoft,  URL: https://en.wikipedia.org/wiki/Microsoft    Data Source: 
Wikipedia
        Matches:
                Text: Microsoft
                Score: 0.55
                Length: 9
                Offset: 0

                Text: Microsoft
                Score: 0.55
                Length: 9
                Offset: 150

        Name: Bill Gates,       ID: Bill Gates, URL: https://en.wikipedia.org/wiki/Bill_Gates   Data Source: 
Wikipedia
        Matches:
                Text: Bill Gates
                Score: 0.63
                Length: 10
                Offset: 25

                Text: Gates
                Score: 0.63
                Length: 5
                Offset: 161

        Name: Paul Allen,       ID: Paul Allen, URL: https://en.wikipedia.org/wiki/Paul_Allen   Data Source: 
Wikipedia
        Matches:
                Text: Paul Allen
                Score: 0.60
                Length: 10
                Offset: 40

        Name: April 4,  ID: April 4,    URL: https://en.wikipedia.org/wiki/April_4      Data Source: 
Wikipedia
        Matches:
                Text: April 4
                Score: 0.32
                Length: 7
                Offset: 54

        Name: BASIC,    ID: BASIC,      URL: https://en.wikipedia.org/wiki/BASIC        Data Source: 
Wikipedia
        Matches:
                Text: BASIC
                Score: 0.33
                Length: 5
                Offset: 89

        Name: Altair 8800,      ID: Altair 8800,        URL: https://en.wikipedia.org/wiki/Altair_8800  Data 
Source: Wikipedia
        Matches:
                Text: Altair 8800
                Score: 0.88
                Length: 11
                Offset: 116

 Key phrase extraction
 

 

Version 3.1

Version 3.0



static void KeyPhraseExtractionExample(TextAnalyticsClient client)
{
    var response = client.ExtractKeyPhrases("My cat might need to see a veterinarian.");

    // Printing key phrases
    Console.WriteLine("Key phrases:");

    foreach (string keyphrase in response.Value)
    {
        Console.WriteLine($"\t{keyphrase}");
    }
}

  OutputOutput

Key phrases:
    cat
    veterinarian

 Extract health entities
C a u t i o nC a u t i o n

 

 

Create a new function called KeyPhraseExtractionExample()  that takes the client that you created earlier, and call

its ExtractKeyPhrases()  function. The returned <Response<KeyPhraseCollection>  object will contain the list of

detected key phrases. If there was an error, it will throw a RequestFailedException .

To use the health operation, make sure your Azure resource is using the S standard pricing tier.

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The

below sample shows a basic example. You can find a more advanced sample on GitHub.

Version 3.1

Version 3.0

https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/textanalytics/Azure.AI.TextAnalytics/samples/Sample7_AnalyzeHealthcareEntities.md


static async Task healthExample(TextAnalyticsClient client)
{
    string document = "Prescribed 100mg ibuprofen, taken twice daily.";

    List<string> batchInput = new List<string>()
    {
        document
    };
    AnalyzeHealthcareEntitiesOperation healthOperation = await 
client.StartAnalyzeHealthcareEntitiesAsync(batchInput);
    await healthOperation.WaitForCompletionAsync();

    await foreach (AnalyzeHealthcareEntitiesResultCollection documentsInPage in healthOperation.Value)
    {
        Console.WriteLine($"Results of Azure Text Analytics \"Healthcare Async\" Model, version: \"
{documentsInPage.ModelVersion}\"");
        Console.WriteLine("");

        foreach (AnalyzeHealthcareEntitiesResult entitiesInDoc in documentsInPage)
        {
            if (!entitiesInDoc.HasError)
            {
                foreach (var entity in entitiesInDoc.Entities)
                {
                    // view recognized healthcare entities
                    Console.WriteLine($"  Entity: {entity.Text}");
                    Console.WriteLine($"  Category: {entity.Category}");
                    Console.WriteLine($"  Offset: {entity.Offset}");
                    Console.WriteLine($"  Length: {entity.Length}");
                    Console.WriteLine($"  NormalizedText: {entity.NormalizedText}");
                }
                Console.WriteLine($"  Found {entitiesInDoc.EntityRelations.Count} relations in the current 
document:");
                Console.WriteLine("");

                // view recognized healthcare relations
                foreach (HealthcareEntityRelation relations in entitiesInDoc.EntityRelations)
                {
                    Console.WriteLine($"    Relation: {relations.RelationType}");
                    Console.WriteLine($"    For this relation there are {relations.Roles.Count} roles");

                    // view relation roles
                    foreach (HealthcareEntityRelationRole role in relations.Roles)
                    {
                        Console.WriteLine($"      Role Name: {role.Name}");

                        Console.WriteLine($"      Associated Entity Text: {role.Entity.Text}");
                        Console.WriteLine($"      Associated Entity Category: {role.Entity.Category}");
                        Console.WriteLine("");
                    }
                    Console.WriteLine("");
                }
            }
            else
            {
                Console.WriteLine("  Error!");
                Console.WriteLine($"  Document error code: {entitiesInDoc.Error.ErrorCode}.");
                Console.WriteLine($"  Message: {entitiesInDoc.Error.Message}");
            }
            Console.WriteLine("");
        }
    }
}



Results of Azure Text Analytics "Healthcare Async" Model, version: "2021-05-15"

  Entity: 100mg
  Category: Dosage
  Offset: 11
  Length: 5
  NormalizedText:
  Entity: ibuprofen
  Category: MedicationName
  Offset: 17
  Length: 9
  NormalizedText: ibuprofen
  Entity: twice daily
  Category: Frequency
  Offset: 34
  Length: 11
  NormalizedText:
  Found 2 relations in the current document:

    Relation: DosageOfMedication
    For this relation there are 2 roles
      Role Name: Dosage
      Associated Entity Text: 100mg
      Associated Entity Category: Dosage

      Role Name: Medication
      Associated Entity Text: ibuprofen
      Associated Entity Category: MedicationName

    Relation: FrequencyOfMedication
    For this relation there are 2 roles
      Role Name: Medication
      Associated Entity Text: ibuprofen
      Associated Entity Category: MedicationName

      Role Name: Frequency
      Associated Entity Text: twice daily
      Associated Entity Category: Frequency

 Use the API asynchronously with the Analyze operation
 

 

C a u t i o nC a u t i o n

using System.Threading.Tasks;
using System.Collections.Generic;
using System.Linq;

Version 3.1

Version 3.0

You can use the Analyze operation to perform asynchronous batch requests for : NER, key phrase extraction,

sentiment analysis, and PII detection. The below sample shows a basic example on one operation. You can find a

more advanced sample on GitHub.

To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Add the following using statements to your C# file.

Create a new function called AnalyzeOperationExample()  that takes the client that you created earlier, and call its 

StartAnalyzeBatchActionsAsync()  function. The returned operation will contain an AnalyzeBatchActionsResult

object. As it is a Long Running Operation, await  on the operation.WaitForCompletionAsync()  for the value to be

https://github.com/Azure/azure-sdk-for-net/blob/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples/Sample_AnalyzeActions.md


static async Task AnalyzeOperationExample(TextAnalyticsClient client)
    {
        string inputText = "Microsoft was founded by Bill Gates and Paul Allen.";

        var batchDocuments = new List<string> { inputText };

        TextAnalyticsActions actions = new TextAnalyticsActions()
        {
            RecognizeEntitiesActions = new List<RecognizeEntitiesAction>() { new RecognizeEntitiesAction() 
},
            ExtractKeyPhrasesActions = new List<ExtractKeyPhrasesAction>() { new ExtractKeyPhrasesAction() 
},
            DisplayName = "Analyze Operation Quick Start Example"
        };

        AnalyzeActionsOperation operation = await client.StartAnalyzeActionsAsync(batchDocuments, actions);

        await operation.WaitForCompletionAsync();

        Console.WriteLine($"Status: {operation.Status}");
        Console.WriteLine($"Created On: {operation.CreatedOn}");
        Console.WriteLine($"Expires On: {operation.ExpiresOn}");
        Console.WriteLine($"Last modified: {operation.LastModified}");
        if (!string.IsNullOrEmpty(operation.DisplayName))
            Console.WriteLine($"Display name: {operation.DisplayName}");
        //Console.WriteLine($"Total actions: {operation.TotalActions}");
        Console.WriteLine($"  Succeeded actions: {operation.ActionsSucceeded}");
        Console.WriteLine($"  Failed actions: {operation.ActionsFailed}");
        Console.WriteLine($"  In progress actions: {operation.ActionsInProgress}");

        await foreach (AnalyzeActionsResult documentsInPage in operation.Value)
        {
            RecognizeEntitiesResultCollection entitiesResult = 
documentsInPage.RecognizeEntitiesResults.FirstOrDefault().DocumentsResults;
            ExtractKeyPhrasesResultCollection keyPhrasesResults = 
documentsInPage.ExtractKeyPhrasesResults.FirstOrDefault().DocumentsResults;

            Console.WriteLine("Recognized Entities");

            foreach (RecognizeEntitiesResult result in entitiesResult)
            {
                Console.WriteLine($"  Recognized the following {result.Entities.Count} entities:");

                foreach (CategorizedEntity entity in result.Entities)
                {
                    Console.WriteLine($"  Entity: {entity.Text}");
                    Console.WriteLine($"  Category: {entity.Category}");
                    Console.WriteLine($"  Offset: {entity.Offset}");
                    Console.WriteLine($"  Length: {entity.Length}");
                    Console.WriteLine($"  ConfidenceScore: {entity.ConfidenceScore}");
                    Console.WriteLine($"  SubCategory: {entity.SubCategory}");
                }
                Console.WriteLine("");
            }

            Console.WriteLine("Key Phrases");
            
            foreach (ExtractKeyPhrasesResult documentResults in keyPhrasesResults)
            {
                Console.WriteLine($"  Recognized the following {documentResults.KeyPhrases.Count} 
Keyphrases:");

                foreach (string keyphrase in documentResults.KeyPhrases)
                {

updated. Once the WaitForCompletionAsync()  finishes, the collection should be updated in the operation.Value .

If there was an error, it will throw a RequestFailedException .



                {
                    Console.WriteLine($"  {keyphrase}");
                }
                Console.WriteLine("");
            }
            
        }
    }

static async Task Main(string[] args)
{
    var client = new TextAnalyticsClient(endpoint, credentials);
    await AnalyzeOperationExample(client).ConfigureAwait(false);
}

  OutputOutput

Status: succeeded
Created On: 3/10/2021 2:25:01 AM +00:00
Expires On: 3/11/2021 2:25:01 AM +00:00
Last modified: 3/10/2021 2:25:05 AM +00:00
Display name: Analyze Operation Quick Start Example
Total actions: 1
  Succeeded actions: 1
  Failed actions: 0
  In progress actions: 0
Recognized Entities
    Recognized the following 3 entities:
    Entity: Microsoft
    Category: Organization
    Offset: 0
    ConfidenceScore: 0.83
    SubCategory: 
    Entity: Bill Gates
    Category: Person
    Offset: 25
    ConfidenceScore: 0.85
    SubCategory: 
    Entity: Paul Allen
    Category: Person
    Offset: 40
    ConfidenceScore: 0.9
    SubCategory: 

IMPORTANTIMPORTANT

 

 

After you add this example to your application, call in your main()  method using await . Because the Analyze

operation is asynchronous, you will need to update your Main()  method to the async Task  type.

The latest stable version of the Text Analytics API is 3.1 .

The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For

production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See

the reference documentation below. If you want to use Text Analytics for health or Asynchronous operations, see the

examples on Github for C#, Python or Java

 

Version 3.1

Version 3.0

Reference documentation | Library source code | Package | Samples

https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://docs.microsoft.com/en-us/java/api/overview/azure/ai-textanalytics-readme?preserve-view=true&view=azure-java-preview
https://github.com/Azure/azure-sdk-for-java/tree/main/sdk/textanalytics/azure-ai-textanalytics
https://mvnrepository.com/artifact/com.azure/azure-ai-textanalytics/5.1.0
https://github.com/Azure/azure-sdk-for-java/tree/main/sdk/textanalytics/azure-ai-textanalytics/src/samples


 Prerequisites

 Setting up
  Add the client libraryAdd the client library
 

 

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.1.0</version>
    </dependency>
</dependencies>

 

 

import com.azure.ai.textanalytics.TextAnalyticsAsyncClient;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;

import java.util.Arrays;
import com.azure.core.util.Context;
import com.azure.core.util.polling.SyncPoller;
import com.azure.ai.textanalytics.util.AnalyzeHealthcareEntitiesResultCollection;
import com.azure.ai.textanalytics.util.AnalyzeHealthcareEntitiesPagedIterable;

Azure subscription - Create one for free

Java Development Kit (JDK) with version 8 or above

Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key

and endpoint. After it deploys, click Go to resourceGo to resource.

To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

You will need the key and endpoint from the resource you create to connect your application to the

Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

You can use the free pricing tier ( F0 ) to try the service, and upgrade later to a paid tier for production.

Version 3.1

Version 3.0

Create a Maven project in your preferred IDE or development environment. Then add the following dependency

to your project's pom.xml file. You can find the implementation syntax for other build tools online.

Create a Java file named TextAnalyticsSamples.java . Open the file and add the following import  statements:

Version 3.1 preview

Version 3.0

In the java file, add a new class and add your Azure resource's key and endpoint as shown below.

https://azure.microsoft.com/free/cognitive-services
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://mvnrepository.com/artifact/com.azure/azure-ai-textanalytics/5.1.0-beta.7


IMPORTANTIMPORTANT

public class TextAnalyticsSamples {
    private static String KEY = "<replace-with-your-text-analytics-key-here>";
    private static String ENDPOINT = "<replace-with-your-text-analytics-endpoint-here>";
}

 

 

public static void main(String[] args) {
    //You will create these methods later in the quickstart.
    TextAnalyticsClient client = authenticateClient(KEY, ENDPOINT);

    sentimentAnalysisWithOpinionMiningExample(client)
    detectLanguageExample(client);
    recognizeEntitiesExample(client);
    recognizeLinkedEntitiesExample(client);
    recognizePiiEntitiesExample(client);
    extractKeyPhrasesExample(client);
}

 Object model

 Code examples

 Authenticate the client

Go to the Azure portal. If the Text Analytics resource you created in the PrerequisitesPrerequisites  section deployed successfully, click

the Go to ResourceGo to Resource button under Next StepsNext Steps . You can find your key and endpoint in the resource's key andkey and

endpointendpoint  page, under resource managementresource management .

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

Add the following main method to the class. You will define the methods called here later.

Version 3.1

Version 3.0

The Text Analytics client is a TextAnalyticsClient  object that authenticates to Azure using your key, and provides

functions to accept text as single strings or as a batch. You can send text to the API synchronously, or

asynchronously. The response object will contain the analysis information for each document you send.

Authenticate the client

Sentiment Analysis

Opinion mining

Language detection

Named Entity recognition

Entity linking

Key phrase extraction

Create a method to instantiate the TextAnalyticsClient  object with the key and endpoint for your Text Analytics

resource. This example is the same for versions 3.0 and 3.1 of the API.

https://docs.microsoft.com/en-us/azure/key-vault/general/overview


static TextAnalyticsClient authenticateClient(String key, String endpoint) {
    return new TextAnalyticsClientBuilder()
        .credential(new AzureKeyCredential(key))
        .endpoint(endpoint)
        .buildClient();
}

 Sentiment analysis
 

 

NOTENOTE

static void sentimentAnalysisExample(TextAnalyticsClient client)
{
    // The text that need be analyzed.
    String text = "I had the best day of my life. I wish you were there with me.";

    DocumentSentiment documentSentiment = client.analyzeSentiment(text);
    System.out.printf(
        "Recognized document sentiment: %s, positive score: %s, neutral score: %s, negative score: %s.%n",
        documentSentiment.getSentiment(),
        documentSentiment.getConfidenceScores().getPositive(),
        documentSentiment.getConfidenceScores().getNeutral(),
        documentSentiment.getConfidenceScores().getNegative());

    for (SentenceSentiment sentenceSentiment : documentSentiment.getSentences()) {
        System.out.printf(
            "Recognized sentence sentiment: %s, positive score: %s, neutral score: %s, negative score: 
%s.%n",
            sentenceSentiment.getSentiment(),
            sentenceSentiment.getConfidenceScores().getPositive(),
            sentenceSentiment.getConfidenceScores().getNeutral(),
            sentenceSentiment.getConfidenceScores().getNegative());
        }
    }
}

  OutputOutput

Recognized document sentiment: positive, positive score: 1.0, neutral score: 0.0, negative score: 0.0.
Recognized sentence sentiment: positive, positive score: 1.0, neutral score: 0.0, negative score: 0.0.
Recognized sentence sentiment: neutral, positive score: 0.21, neutral score: 0.77, negative score: 0.02.

 

In your program's main()  method, call the authentication method to instantiate the client.

Version 3.1

Version 3.0

In version 3.1 :

Sentiment Analysis includes Opinion Mining analysis which is optional flag.

Opinion Mining contains aspect and opinion level sentiment.

Create a new function called sentimentAnalysisExample()  that takes the client that you created earlier, and call its

analyzeSentiment()  function. The returned AnalyzeSentimentResult  object will contain documentSentiment  and 

sentenceSentiments  if successful, or an errorMessage  if not.



Opinion mining

 static void sentimentAnalysisWithOpinionMiningExample(TextAnalyticsClient client)
 {
     // The document that needs be analyzed.
     String document = "Bad atmosphere. Not close to plenty of restaurants, hotels, and transit! Staff are 
not friendly and helpful.";

     System.out.printf("Document = %s%n", document);

     AnalyzeSentimentOptions options = new AnalyzeSentimentOptions().setIncludeOpinionMining(true);
     final DocumentSentiment documentSentiment = client.analyzeSentiment(document, "en", options);
     SentimentConfidenceScores scores = documentSentiment.getConfidenceScores();
     System.out.printf(
             "Recognized document sentiment: %s, positive score: %f, neutral score: %f, negative score: 
%f.%n",
             documentSentiment.getSentiment(), scores.getPositive(), scores.getNeutral(), 
scores.getNegative());

     documentSentiment.getSentences().forEach(sentenceSentiment -> {
         SentimentConfidenceScores sentenceScores = sentenceSentiment.getConfidenceScores();
         System.out.printf("\tSentence sentiment: %s, positive score: %f, neutral score: %f, negative score: 
%f.%n",
                 sentenceSentiment.getSentiment(), sentenceScores.getPositive(), 
sentenceScores.getNeutral(), sentenceScores.getNegative());
         sentenceSentiment.getOpinions().forEach(opinion -> {
             TargetSentiment targetSentiment = opinion.getTarget();
             System.out.printf("\t\tTarget sentiment: %s, target text: %s%n", 
targetSentiment.getSentiment(),
                     targetSentiment.getText());
             for (AssessmentSentiment assessmentSentiment : opinion.getAssessments()) {
                 System.out.printf("\t\t\t'%s' assessment sentiment because of \"%s\". Is the assessment 
negated: %s.%n",
                         assessmentSentiment.getSentiment(), assessmentSentiment.getText(), 
assessmentSentiment.isNegated());
             }
         });
     });
 }

  OutputOutput

Document = Bad atmosphere. Not close to plenty of restaurants, hotels, and transit! Staff are not friendly 
and helpful.
Recognized document sentiment: negative, positive score: 0.010000, neutral score: 0.140000, negative score: 
0.850000.
 Sentence sentiment: negative, positive score: 0.000000, neutral score: 0.000000, negative score: 1.000000.
  Target sentiment: negative, target text: atmosphere
   'negative' assessment sentiment because of "bad". Is the assessment negated: false.
 Sentence sentiment: negative, positive score: 0.020000, neutral score: 0.440000, negative score: 0.540000.
 Sentence sentiment: negative, positive score: 0.000000, neutral score: 0.000000, negative score: 1.000000.
  Target sentiment: negative, target text: Staff
   'negative' assessment sentiment because of "friendly". Is the assessment negated: true.
   'negative' assessment sentiment because of "helpful". Is the assessment negated: true.

To perform sentiment analysis with opinion mining, create a new function called 

sentimentAnalysisWithOpinionMiningExample()  that takes the client that you created earlier, and call its 

analyzeSentiment()  function with setting option object AnalyzeSentimentOptions . The returned 

AnalyzeSentimentResult  object will contain documentSentiment  and sentenceSentiments  if successful, or an 

errorMessage  if not.



 Language detection

TIPTIP

static void detectLanguageExample(TextAnalyticsClient client)
{
    // The text that need be analyzed.
    String text = "Ce document est rédigé en Français.";

    DetectedLanguage detectedLanguage = client.detectLanguage(text);
    System.out.printf("Detected primary language: %s, ISO 6391 name: %s, score: %.2f.%n",
        detectedLanguage.getName(),
        detectedLanguage.getIso6391Name(),
        detectedLanguage.getConfidenceScore());
}

  OutputOutput

Detected primary language: French, ISO 6391 name: fr, score: 1.00.

 Named Entity Recognition (NER)
 

 

NOTENOTE

Create a new function called detectLanguageExample()  that takes the client that you created earlier, and call its 

detectLanguage()  function. The returned DetectLanguageResult  object will contain a primary language detected,

a list of other languages detected if successful, or an errorMessage  if not. This example is the same for versions

3.0 and 3.1 of the API.

In some cases it may be hard to disambiguate languages based on the input. You can use the countryHint  parameter

to specify a 2-letter country code. By default the API is using the "US" as the default countryHint, to remove this behavior

you can reset this parameter by setting this value to empty string countryHint = "" . To set a different default, set the 

TextAnalyticsClientOptions.DefaultCountryHint  property and pass it during the client's initialization.

Version 3.1

Version 3.0

In version 3.1 :

NER includes separate methods for detecting personal information.

Entity linking is a separate request than NER.

Create a new function called recognizeEntitiesExample()  that takes the client that you created earlier, and call its

recognizeEntities()  function. The returned CategorizedEntityCollection  object will contain a list of 

CategorizedEntity  if successful, or an errorMessage  if not.



static void recognizeEntitiesExample(TextAnalyticsClient client)
{
    // The text that need be analyzed.
    String text = "I had a wonderful trip to Seattle last week.";

    for (CategorizedEntity entity : client.recognizeEntities(text)) {
        System.out.printf(
            "Recognized entity: %s, entity category: %s, entity sub-category: %s, score: %s, offset: %s, 
length: %s.%n",
            entity.getText(),
            entity.getCategory(),
            entity.getSubcategory(),
            entity.getConfidenceScore(),
            entity.getOffset(),
            entity.getLength());
    }
}

  OutputOutput

Recognized entity: trip, entity category: Event, entity sub-category: null, score: 0.61, offset: 8, length: 
4.
Recognized entity: Seattle, entity category: Location, entity sub-category: GPE, score: 0.82, offset: 16, 
length: 7.
Recognized entity: last week, entity category: DateTime, entity sub-category: DateRange, score: 0.8, offset: 
24, length: 9.

 Personally Identifiable Information (PII) recognition

static void recognizePiiEntitiesExample(TextAnalyticsClient client)
{
    // The text that need be analyzed.
    String document = "My SSN is 859-98-0987";
    PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
    System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
    piiEntityCollection.forEach(entity -> System.out.printf(
        "Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: 
%s,"
            + " confidence score: %f.%n",
        entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
}

  OutputOutput

Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: U.S. Social Security 
Number (SSN), entity subcategory: null, confidence score: 0.650000.

 Entity linking
 

Create a new function called recognizePiiEntitiesExample()  that takes the client that you created earlier, and call

its recognizePiiEntities()  function. The returned PiiEntityCollection  object will contain a list of PiiEntity  if

successful, or an errorMessage  if not. It will also contain the redacted text, which consists of the input text with

all identifiable entities replaced with ***** .

Version 3.1

Version 3.0



 

static void recognizeLinkedEntitiesExample(TextAnalyticsClient client)
{
    // The text that need be analyzed.
    String text = "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, " +
        "to develop and sell BASIC interpreters for the Altair 8800. " +
        "During his career at Microsoft, Gates held the positions of chairman, " +
        "chief executive officer, president and chief software architect, " +
        "while also being the largest individual shareholder until May 2014.";

    System.out.printf("Linked Entities:%n");
    for (LinkedEntity linkedEntity : client.recognizeLinkedEntities(text)) {
        System.out.printf("Name: %s, ID: %s, URL: %s, Data Source: %s.%n",
            linkedEntity.getName(),
            linkedEntity.getDataSourceEntityId(),
            linkedEntity.getUrl(),
            linkedEntity.getDataSource());
        System.out.printf("Matches:%n");
        for (LinkedEntityMatch linkedEntityMatch : linkedEntity.getMatches()) {
            System.out.printf("Text: %s, Score: %.2f, Offset: %s, Length: %s%n",
            linkedEntityMatch.getText(),
            linkedEntityMatch.getConfidenceScore(),
            linkedEntityMatch.getOffset(),
            linkedEntityMatch.getLength());
        }
    }
}

  OutputOutput

Linked Entities:
Name: Microsoft, ID: Microsoft, URL: https://en.wikipedia.org/wiki/Microsoft, Data Source: Wikipedia.
Matches:
Text: Microsoft, Score: 0.55, Offset: 9, Length: 0
Text: Microsoft, Score: 0.55, Offset: 9, Length: 150
Name: Bill Gates, ID: Bill Gates, URL: https://en.wikipedia.org/wiki/Bill_Gates, Data Source: Wikipedia.
Matches:
Text: Bill Gates, Score: 0.63, Offset: 10, Length: 25
Text: Gates, Score: 0.63, Offset: 5, Length: 161
Name: Paul Allen, ID: Paul Allen, URL: https://en.wikipedia.org/wiki/Paul_Allen, Data Source: Wikipedia.
Matches:
Text: Paul Allen, Score: 0.60, Offset: 10, Length: 40
Name: April 4, ID: April 4, URL: https://en.wikipedia.org/wiki/April_4, Data Source: Wikipedia.
Matches:
Text: April 4, Score: 0.32, Offset: 7, Length: 54
Name: BASIC, ID: BASIC, URL: https://en.wikipedia.org/wiki/BASIC, Data Source: Wikipedia.
Matches:
Text: BASIC, Score: 0.33, Offset: 5, Length: 89
Name: Altair 8800, ID: Altair 8800, URL: https://en.wikipedia.org/wiki/Altair_8800, Data Source: Wikipedia.
Matches:
Text: Altair 8800, Score: 0.88, Offset: 11, Length: 116

 Key phrase extraction

Create a new function called recognizeLinkedEntitiesExample()  that takes the client that you created earlier, and

call its recognizeLinkedEntities()  function. The returned LinkedEntityCollection  object will contain a list of 

LinkedEntity  if successful, or an errorMessage  if not. Since linked entities are uniquely identified, occurrences

of the same entity are grouped under a LinkedEntity  object as a list of LinkedEntityMatch  objects.

Create a new function called extractKeyPhrasesExample()  that takes the client that you created earlier, and call its

extractKeyPhrases()  function. The returned ExtractKeyPhraseResult  object will contain a list of key phrases if

successful, or an errorMessage  if not. This example is the same for version 3.0 and 3.1 of the API.



static void extractKeyPhrasesExample(TextAnalyticsClient client)
{
    // The text that need be analyzed.
    String text = "My cat might need to see a veterinarian.";

    System.out.printf("Recognized phrases: %n");
    for (String keyPhrase : client.extractKeyPhrases(text)) {
        System.out.printf("%s%n", keyPhrase);
    }
}

  OutputOutput

Recognized phrases: 
cat
veterinarian

 Extract health entities
 

 

Version 3.1

Version 3.0

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The

below sample shows a basic example. You can find a more advanced sample on GitHub.

https://github.com/Azure/azure-sdk-for-java/blob/main/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics/lro/AnalyzeHealthcareEntities.java


static void healthExample(TextAnalyticsClient client){
    List<TextDocumentInput> documents = Arrays.asList(
            new TextDocumentInput("0",
                    "Prescribed 100mg ibuprofen, taken twice daily."));

    AnalyzeHealthcareEntitiesOptions options = new 
AnalyzeHealthcareEntitiesOptions().setIncludeStatistics(true);

    SyncPoller<AnalyzeHealthcareEntitiesOperationDetail, AnalyzeHealthcareEntitiesPagedIterable>
            syncPoller = client.beginAnalyzeHealthcareEntities(documents, options, Context.NONE);

    System.out.printf("Poller status: %s.%n", syncPoller.poll().getStatus());
    syncPoller.waitForCompletion();

    // Task operation statistics
    AnalyzeHealthcareEntitiesOperationDetail operationResult = syncPoller.poll().getValue();
    System.out.printf("Operation created time: %s, expiration time: %s.%n",
            operationResult.getCreatedAt(), operationResult.getExpiresAt());
    System.out.printf("Poller status: %s.%n", syncPoller.poll().getStatus());

    for (AnalyzeHealthcareEntitiesResultCollection resultCollection : syncPoller.getFinalResult()) {
        // Model version
        System.out.printf(
                "Results of Azure Text Analytics \"Analyze Healthcare Entities\" Model, version: %s%n",
                resultCollection.getModelVersion());

        for (AnalyzeHealthcareEntitiesResult healthcareEntitiesResult : resultCollection) {
            System.out.println("Document ID = " + healthcareEntitiesResult.getId());
            System.out.println("Document entities: ");
            // Recognized healthcare entities
            for (HealthcareEntity entity : healthcareEntitiesResult.getEntities()) {
                System.out.printf(
                        "\tText: %s, normalized name: %s, category: %s, subcategory: %s, confidence score: 
%f.%n",
                        entity.getText(), entity.getNormalizedText(), entity.getCategory(),
                        entity.getSubcategory(), entity.getConfidenceScore());
            }
            // Recognized healthcare entity relation groups
            for (HealthcareEntityRelation entityRelation : healthcareEntitiesResult.getEntityRelations()) {
                System.out.printf("Relation type: %s.%n", entityRelation.getRelationType());
                for (HealthcareEntityRelationRole role : entityRelation.getRoles()) {
                    HealthcareEntity entity = role.getEntity();
                    System.out.printf("\tEntity text: %s, category: %s, role: %s.%n",
                            entity.getText(), entity.getCategory(), role.getName());
                }
            }
        }
    }
}

  outputoutput



Poller status: IN_PROGRESS.
Operation created time: 2021-07-20T19:45:50Z, expiration time: 2021-07-21T19:45:50Z.
Poller status: SUCCESSFULLY_COMPLETED.
Results of Azure Text Analytics "Analyze Healthcare Entities" Model, version: 2021-05-15
Document ID = 0
Document entities: 
 Text: 100mg, normalized name: null, category: Dosage, subcategory: null, confidence score: 1.000000.
 Text: ibuprofen, normalized name: ibuprofen, category: MedicationName, subcategory: null, confidence score: 
1.000000.
 Text: twice daily, normalized name: null, category: Frequency, subcategory: null, confidence score: 
1.000000.
Relation type: DosageOfMedication.
 Entity text: 100mg, category: Dosage, role: Dosage.
 Entity text: ibuprofen, category: MedicationName, role: Medication.
Relation type: FrequencyOfMedication.
 Entity text: ibuprofen, category: MedicationName, role: Medication.
 Entity text: twice daily, category: Frequency, role: Frequency.

 Use the API asynchronously with the Analyze operation
 

 

C a u t i o nC a u t i o n

static void analyzeActionsExample(TextAnalyticsClient client){
        List<TextDocumentInput> documents = new ArrayList<>();
        documents.add(new TextDocumentInput("0", "Microsoft was founded by Bill Gates and Paul Allen."));

        SyncPoller<AnalyzeActionsOperationDetail, AnalyzeActionsResultPagedIterable> syncPoller =
                client.beginAnalyzeActions(documents,
                        new TextAnalyticsActions().setDisplayName("Example analyze task")
                                .setRecognizeEntitiesActions(new RecognizeEntitiesAction())
                                .setExtractKeyPhrasesActions(
                                        new ExtractKeyPhrasesAction().setModelVersion("latest")),
                        new AnalyzeActionsOptions().setIncludeStatistics(false),
                        Context.NONE);

        // Task operation statistics details
        while (syncPoller.poll().getStatus() == LongRunningOperationStatus.IN_PROGRESS) {
            final AnalyzeActionsOperationDetail operationDetail = syncPoller.poll().getValue();
            System.out.printf("Action display name: %s, Successfully completed actions: %d, in-process 
actions: %d,"
                            + " failed actions: %d, total actions: %d%n",
                    operationDetail.getDisplayName(), operationDetail.getSucceededCount(),
                    operationDetail.getInProgressCount(), operationDetail.getFailedCount(),
                    operationDetail.getTotalCount());
        }

        syncPoller.waitForCompletion();

        Iterable<PagedResponse<AnalyzeActionsResult>> pagedResults = 
syncPoller.getFinalResult().iterableByPage();
        for (PagedResponse<AnalyzeActionsResult> perPage : pagedResults) {

Version 3.1

Version 3.0

You can use the Analyze operation to perform asynchronous batch requests for : NER, key phrase extraction,

sentiment analysis, and PII detection. The below sample shows a basic example on one operation. You can find a

more advanced sample on GitHub

To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Create a new function called analyzeBatchActionsExample() , which calls the beginAnalyzeBatchActions()

function. The result will be a long running operation which will be polled for results.

https://github.com/Azure/azure-sdk-for-net/blob/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples/Sample_AnalyzeActions.md


            System.out.printf("Response code: %d, Continuation Token: %s.%n", perPage.getStatusCode(),
                    perPage.getContinuationToken());
            for (AnalyzeActionsResult actionsResult : perPage.getElements()) {
                System.out.println("Entities recognition action results:");
                for (RecognizeEntitiesActionResult actionResult : 
actionsResult.getRecognizeEntitiesResults()) {
                    if (!actionResult.isError()) {
                        for (RecognizeEntitiesResult documentResult : actionResult.getDocumentsResults()) {
                            if (!documentResult.isError()) {
                                for (CategorizedEntity entity : documentResult.getEntities()) {
                                    System.out.printf(
                                            "\tText: %s, category: %s, confidence score: %f.%n",
                                            entity.getText(), entity.getCategory(), 
entity.getConfidenceScore());
                                }
                            } else {
                                System.out.printf("\tCannot recognize entities. Error: %s%n",
                                        documentResult.getError().getMessage());
                            }
                        }
                    } else {
                        System.out.printf("\tCannot execute Entities Recognition action. Error: %s%n",
                                actionResult.getError().getMessage());
                    }
                }

                System.out.println("Key phrases extraction action results:");
                for (ExtractKeyPhrasesActionResult actionResult : 
actionsResult.getExtractKeyPhrasesResults()) {
                    if (!actionResult.isError()) {
                        for (ExtractKeyPhraseResult documentResult : actionResult.getDocumentsResults()) {
                            if (!documentResult.isError()) {
                                System.out.println("\tExtracted phrases:");
                                for (String keyPhrases : documentResult.getKeyPhrases()) {
                                    System.out.printf("\t\t%s.%n", keyPhrases);
                                }
                            } else {
                                System.out.printf("\tCannot extract key phrases. Error: %s%n",
                                        documentResult.getError().getMessage());
                            }
                        }
                    } else {
                        System.out.printf("\tCannot execute Key Phrases Extraction action. Error: %s%n",
                                actionResult.getError().getMessage());
                    }
                }
            }
        }
    }

analyzeBatchActionsExample(client);

  OutputOutput

After you add this example to your application, call it in your main()  method.



Action display name: Example analyze task, Successfully completed actions: 1, in-process actions: 1, failed 
actions: 0, total actions: 2
Response code: 200, Continuation Token: null.
Entities recognition action results:
 Text: Microsoft, category: Organization, confidence score: 1.000000.
 Text: Bill Gates, category: Person, confidence score: 1.000000.
 Text: Paul Allen, category: Person, confidence score: 1.000000.
Key phrases extraction action results:
 Extracted phrases:
  Bill Gates.
  Paul Allen.
  Microsoft.

IMPORTANTIMPORTANT

 

 

 Prerequisites

 Setting up
  Create a new Node.js applicationCreate a new Node.js application

mkdir myapp 

cd myapp

You can also use the Analyze operation to perform NER, key phrase extraction, sentiment analysis and detect PII.

See the Analyze sample on GitHub.

The latest stable version of the Text Analytics API is 3.1 .

The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For

production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See

the reference documentation below.

You can also run this version of the Text Analytics client library in your browser.

Be sure to only follow the instructions for the version you are using.

 

Version 3.1

Version 3.0

v3 Reference documentation | v3 Library source code | v3 Package (NPM) | v3 Samples

Azure subscription - Create one for free

The current version of Node.js.

Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key

and endpoint. After it deploys, click Go to resourceGo to resource.

To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

You will need the key and endpoint from the resource you create to connect your application to the

Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

You can use the free pricing tier ( F0 ) to try the service, and upgrade later to a paid tier for production.

In a console window (such as cmd, PowerShell, or Bash), create a new directory for your app, and navigate to it.

Run the npm init  command to create a node application with a package.json  file.

https://github.com/Azure/azure-sdk-for-java/blob/master/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics/lro/AnalyzeActionsAsync.java
https://github.com/Azure/azure-sdk-for-js/blob/master/documentation/Bundling.md
https://docs.microsoft.com/en-us/javascript/api/overview/azure/ai-text-analytics-readme?preserve-view=true&view=azure-node-preview
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics
https://www.npmjs.com/package/@azure/ai-text-analytics/v/5.1.0
https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/textanalytics/ai-text-analytics/samples
https://azure.microsoft.com/free/cognitive-services
https://nodejs.org/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics


npm init

  Install the client libraryInstall the client library
 

 

npm install --save @azure/ai-text-analytics@5.1.0

TIPTIP

 

 

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

IMPORTANTIMPORTANT

const key = '<paste-your-text-analytics-key-here>';
const endpoint = '<paste-your-text-analytics-endpoint-here>';

 Object model

Version 3.1

Version 3.0

Install the @azure/ai-text-analytics  NPM packages:

Want to view the whole quickstart code file at once? You can find it on GitHub, which contains the code examples in this

quickstart.

Your app's package.json  file will be updated with the dependencies. Create a file named index.js  and add the

following:

Version 3.1

Version 3.0

Create variables for your resource's Azure endpoint and key.

Go to the Azure portal. If the Text Analytics resource you created in the PrerequisitesPrerequisites  section deployed successfully, click

the Go to ResourceGo to Resource button under Next StepsNext Steps . You can find your key and endpoint in the resource's key andkey and

endpointendpoint  page, under resource managementresource management .

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

The Text Analytics client is a TextAnalyticsClient  object that authenticates to Azure using your key. The client

provides several methods for analyzing text, as a single string, or a batch.

Text is sent to the API as a list of documents , which are dictionary  objects containing a combination of id , 

text , and language  attributes depending on the method used. The text  attribute stores the text to be

analyzed in the origin language , and the id  can be any value.

The response object is a list containing the analysis information for each document.

https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/javascript/TextAnalytics/text-analytics-v3-client-library.js
https://docs.microsoft.com/en-us/azure/key-vault/general/overview


 

Code examples

 Authenticate the client
 

 

const textAnalyticsClient = new TextAnalyticsClient(endpoint,  new AzureKeyCredential(key));

 Sentiment analysis
 

 

async function sentimentAnalysis(client){

    const sentimentInput = [
        "I had the best day of my life. I wish you were there with me."
    ];
    const sentimentResult = await client.analyzeSentiment(sentimentInput);

    sentimentResult.forEach(document => {
        console.log(`ID: ${document.id}`);
        console.log(`\tDocument Sentiment: ${document.sentiment}`);
        console.log(`\tDocument Scores:`);
        console.log(`\t\tPositive: ${document.confidenceScores.positive.toFixed(2)} \tNegative: 
${document.confidenceScores.negative.toFixed(2)} \tNeutral: 
${document.confidenceScores.neutral.toFixed(2)}`);
        console.log(`\tSentences Sentiment(${document.sentences.length}):`);
        document.sentences.forEach(sentence => {
            console.log(`\t\tSentence sentiment: ${sentence.sentiment}`)
            console.log(`\t\tSentences Scores:`);
            console.log(`\t\tPositive: ${sentence.confidenceScores.positive.toFixed(2)} \tNegative: 
${sentence.confidenceScores.negative.toFixed(2)} \tNeutral: 
${sentence.confidenceScores.neutral.toFixed(2)}`);
        });
    });
}
sentimentAnalysis(textAnalyticsClient)

Client Authentication

Sentiment Analysis

Opinion mining

Language detection

Named Entity recognition

Entity linking

Personally Identifiable Information

Key phrase extraction

Version 3.1

Version 3.0

Create a new TextAnalyticsClient  object with your key and endpoint as parameters.

Version 3.1

Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's analyzeSentiment()

method and get the returned SentimentBatchResult  object. Iterate through the list of results, and print each

document's ID, document level sentiment with confidence scores. For each document, result contains sentence

level sentiment along with offsets, length, and confidence scores.



  OutputOutput

ID: 0
        Document Sentiment: positive
        Document Scores:
                Positive: 1.00  Negative: 0.00  Neutral: 0.00
        Sentences Sentiment(2):
                Sentence sentiment: positive
                Sentences Scores:
                Positive: 1.00  Negative: 0.00  Neutral: 0.00
                Sentence sentiment: neutral
                Sentences Scores:
                Positive: 0.21  Negative: 0.02  Neutral: 0.77

 Opinion mining
 

 

Run your code with node index.js  in your console window.

Version 3.1

Version 3.0

In order to do sentiment analysis with opinion mining, create an array of strings containing the document you

want to analyze. Call the client's analyzeSentiment()  method with adding option flag 

includeOpinionMining: true  and get the returned SentimentBatchResult  object. Iterate through the list of results,

and print each document's ID, document level sentiment with confidence scores. For each document, result

contains not only sentence level sentiment as above, but also aspect and opinion level sentiment.



async function sentimentAnalysisWithOpinionMining(client){

  const sentimentInput = [
    {
      text: "The food and service were unacceptable, but the concierge were nice",
      id: "0",
      language: "en"
    }
  ];
  const results = await client.analyzeSentiment(sentimentInput, { includeOpinionMining: true });

  for (let i = 0; i < results.length; i++) {
    const result = results[i];
    console.log(`- Document ${result.id}`);
    if (!result.error) {
      console.log(`\tDocument text: ${sentimentInput[i].text}`);
      console.log(`\tOverall Sentiment: ${result.sentiment}`);
      console.log("\tSentiment confidence scores:", result.confidenceScores);
      console.log("\tSentences");
      for (const { sentiment, confidenceScores, opinions } of result.sentences) {
        console.log(`\t- Sentence sentiment: ${sentiment}`);
        console.log("\t  Confidence scores:", confidenceScores);
        console.log("\t  Mined opinions");
        for (const { target, assessments } of opinions) {
          console.log(`\t\t- Target text: ${target.text}`);
          console.log(`\t\t  Target sentiment: ${target.sentiment}`);
          console.log("\t\t  Target confidence scores:", target.confidenceScores);
          console.log("\t\t  Target assessments");
          for (const { text, sentiment } of assessments) {
            console.log(`\t\t\t- Text: ${text}`);
            console.log(`\t\t\t  Sentiment: ${sentiment}`);
          }
        }
      }
    } else {
      console.error(`\tError: ${result.error}`);
    }
  }
}
sentimentAnalysisWithOpinionMining(textAnalyticsClient)

  OutputOutput

Run your code with node index.js  in your console window.



- Document 0
        Document text: The food and service were unacceptable, but the concierge were nice
        Overall Sentiment: positive
        Sentiment confidence scores: { positive: 0.84, neutral: 0, negative: 0.16 }
        Sentences
        - Sentence sentiment: positive
          Confidence scores: { positive: 0.84, neutral: 0, negative: 0.16 }
          Mined opinions
                - Target text: food
                  Target sentiment: negative
                  Target confidence scores: { positive: 0.01, negative: 0.99 }
                  Target assessments
                        - Text: unacceptable
                          Sentiment: negative
                - Target text: service
                  Target sentiment: negative
                  Target confidence scores: { positive: 0.01, negative: 0.99 }
                  Target assessments
                        - Text: unacceptable
                          Sentiment: negative
                - Target text: concierge
                  Target sentiment: positive
                  Target confidence scores: { positive: 1, negative: 0 }
                  Target assessments
                        - Text: nice
                          Sentiment: positive

 Language detection
 

 

async function languageDetection(client) {

    const languageInputArray = [
        "Ce document est rédigé en Français."
    ];
    const languageResult = await client.detectLanguage(languageInputArray);

    languageResult.forEach(document => {
        console.log(`ID: ${document.id}`);
        console.log(`\tPrimary Language ${document.primaryLanguage.name}`)
    });
}
languageDetection(textAnalyticsClient);

  OutputOutput

ID: 0
        Primary Language French

 Named Entity Recognition (NER)
 

Version 3.1

Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's detectLanguage()

method and get the returned DetectLanguageResultCollection . Then iterate through the results, and print each

document's ID with respective primary language.

Run your code with node index.js  in your console window.



 

async function entityRecognition(client){

    const entityInputs = [
        "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC 
interpreters for the Altair 8800",
        "La sede principal de Microsoft se encuentra en la ciudad de Redmond, a 21 kilómetros de Seattle."
    ];
    const entityResults = await client.recognizeEntities(entityInputs);

    entityResults.forEach(document => {
        console.log(`Document ID: ${document.id}`);
        document.entities.forEach(entity => {
            console.log(`\tName: ${entity.text} \tCategory: ${entity.category} \tSubcategory: 
${entity.subCategory ? entity.subCategory : "N/A"}`);
            console.log(`\tScore: ${entity.confidenceScore}`);
        });
    });
}
entityRecognition(textAnalyticsClient);

  OutputOutput

Document ID: 0
        Name: Microsoft         Category: Organization  Subcategory: N/A
        Score: 0.29
        Name: Bill Gates        Category: Person        Subcategory: N/A
        Score: 0.78
        Name: Paul Allen        Category: Person        Subcategory: N/A
        Score: 0.82
        Name: April 4, 1975     Category: DateTime      Subcategory: Date
        Score: 0.8
        Name: 8800      Category: Quantity      Subcategory: Number
        Score: 0.8
Document ID: 1
        Name: 21        Category: Quantity      Subcategory: Number
        Score: 0.8
        Name: Seattle   Category: Location      Subcategory: GPE
        Score: 0.25

 Personally Identifying Information (PII) recognition

Version 3.1

Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's recognizeEntities()

method and get the RecognizeEntitiesResult  object. Iterate through the list of results, and print the entity name,

type, subtype, offset, length, and score.

Run your code with node index.js  in your console window.

Create an array of strings containing the document you want to analyze. Call the client's recognizePiiEntities()

method and get the RecognizePIIEntitiesResult  object. Iterate through the list of results, and print the entity

name, type, and score.



async function piiRecognition(client) {

    const documents = [
        "The employee's phone number is (555) 555-5555."
    ];

    const results = await client.recognizePiiEntities(documents, "en");
    for (const result of results) {
        if (result.error === undefined) {
            console.log("Redacted Text: ", result.redactedText);
            console.log(" -- Recognized PII entities for input", result.id, "--");
            for (const entity of result.entities) {
                console.log(entity.text, ":", entity.category, "(Score:", entity.confidenceScore, ")");
            }
        } else {
            console.error("Encountered an error:", result.error);
        }
    }
}
piiRecognition(textAnalyticsClient)

  OutputOutput

Redacted Text:  The employee's phone number is **************.
 -- Recognized PII entities for input 0 --
(555) 555-5555 : Phone Number (Score: 0.8 )

 Entity linking
 

 

Run your code with node index.js  in your console window.

Version 3.1

Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's 

recognizeLinkedEntities()  method and get the RecognizeLinkedEntitiesResult  object. Iterate through the list of

results, and print the entity name, ID, data source, url, and matches. Every object in matches  array will contain

offset, length, and score for that match.



async function linkedEntityRecognition(client){

    const linkedEntityInput = [
        "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC 
interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, 
chief executive officer, president and chief software architect, while also being the largest individual 
shareholder until May 2014."
    ];
    const entityResults = await client.recognizeLinkedEntities(linkedEntityInput);

    entityResults.forEach(document => {
        console.log(`Document ID: ${document.id}`);
        document.entities.forEach(entity => {
            console.log(`\tName: ${entity.name} \tID: ${entity.dataSourceEntityId} \tURL: ${entity.url} 
\tData Source: ${entity.dataSource}`);
            console.log(`\tMatches:`)
            entity.matches.forEach(match => {
                console.log(`\t\tText: ${match.text} \tScore: ${match.confidenceScore.toFixed(2)}`);
        })
        });
    });
}
linkedEntityRecognition(textAnalyticsClient);

  OutputOutput

Document ID: 0
        Name: Altair 8800       ID: Altair 8800         URL: https://en.wikipedia.org/wiki/Altair_8800  Data 
Source: Wikipedia
        Matches:
                Text: Altair 8800       Score: 0.88
        Name: Bill Gates        ID: Bill Gates  URL: https://en.wikipedia.org/wiki/Bill_Gates   Data Source: 
Wikipedia
        Matches:
                Text: Bill Gates        Score: 0.63
                Text: Gates     Score: 0.63
        Name: Paul Allen        ID: Paul Allen  URL: https://en.wikipedia.org/wiki/Paul_Allen   Data Source: 
Wikipedia
        Matches:
                Text: Paul Allen        Score: 0.60
        Name: Microsoft         ID: Microsoft   URL: https://en.wikipedia.org/wiki/Microsoft    Data Source: 
Wikipedia
        Matches:
                Text: Microsoft         Score: 0.55
                Text: Microsoft         Score: 0.55
        Name: April 4   ID: April 4     URL: https://en.wikipedia.org/wiki/April_4      Data Source: 
Wikipedia
        Matches:
                Text: April 4   Score: 0.32
        Name: BASIC     ID: BASIC       URL: https://en.wikipedia.org/wiki/BASIC        Data Source: 
Wikipedia
        Matches:
                Text: BASIC     Score: 0.33

 Key phrase extraction
 

 

Run your code with node index.js  in your console window.

Version 3.1

Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's extractKeyPhrases()



async function keyPhraseExtraction(client){

    const keyPhrasesInput = [
        "My cat might need to see a veterinarian.",
    ];
    const keyPhraseResult = await client.extractKeyPhrases(keyPhrasesInput);
    
    keyPhraseResult.forEach(document => {
        console.log(`ID: ${document.id}`);
        console.log(`\tDocument Key Phrases: ${document.keyPhrases}`);
    });
}
keyPhraseExtraction(textAnalyticsClient);

  OutputOutput

ID: 0
        Document Key Phrases: cat,veterinarian

 Extract health entities
C a u t i o nC a u t i o n

 

 

method and get the returned ExtractKeyPhrasesResult  object. Iterate through the results and print each

document's ID, and any detected key phrases.

Run your code with node index.js  in your console window.

To use the health operation, make sure your Azure resource is using the S standard pricing tier.

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The

below sample shows a basic example. You can find a more advanced sample on GitHub.

Version 3.1

Version 3.0

https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/textanalytics/ai-text-analytics/samples/v5/javascript/beginAnalyzeHealthcareEntities.js


async function healthExample(client) {
    console.log("== Recognize Healthcare Entities Sample ==");

    const documents = [
        "Prescribed 100mg ibuprofen, taken twice daily."
      ];
    const poller = await client.beginAnalyzeHealthcareEntities(documents, "en", {
      includeStatistics: true
    });
  
    poller.onProgress(() => {
      console.log(
        `Last time the operation was updated was on: ${poller.getOperationState().lastModifiedOn}`
      );
    });
    console.log(
      `The analyze healthcare entities operation was created on ${
        poller.getOperationState().createdOn
      }`
    );
    console.log(
      `The analyze healthcare entities operation results will expire on ${
        poller.getOperationState().expiresOn
      }`
    );
  
    const results = await poller.pollUntilDone();
  
    for await (const result of results) {
      console.log(`- Document ${result.id}`);
      if (!result.error) {
        console.log("\tRecognized Entities:");
        for (const entity of result.entities) {
          console.log(`\t- Entity "${entity.text}" of type ${entity.category}`);
        }
        if (result.entityRelations && (result.entityRelations.length > 0)) {
          console.log(`\tRecognized relations between entities:`);
          for (const relation of result.entityRelations) {
            console.log(
              `\t\t- Relation of type ${relation.relationType} found between the following entities:`
            );
            for (const role of relation.roles) {
              console.log(`\t\t\t- "${role.entity.text}" with the role ${role.name}`);
            }
          }
        }
      } else console.error("\tError:", result.error);
    }
  }
  
  healthExample(textAnalyticsClient).catch((err) => {
    console.error("The sample encountered an error:", err);
  });

  OutputOutput



- Document 0
    Recognized Entities:
    - Entity "100mg" of type Dosage
    - Entity "ibuprofen" of type MedicationName
    - Entity "twice daily" of type Frequency
    Recognized relations between entities:
        - Relation of type DosageOfMedication found between the following entities:   
                - "100mg" with the role Dosage
                - "ibuprofen" with the role Medication
        - Relation of type FrequencyOfMedication found between the following entities:
                - "ibuprofen" with the role Medication
                - "twice daily" with the role Frequency

 Use the API asynchronously with the Analyze operation
 

 

C a u t i o nC a u t i o n

Version 3.1

Version 3.0

You can use the Analyze operation to perform asynchronous batch requests for : NER, key phrase extraction,

sentiment analysis, and PII detection. The below sample shows a basic example on one operation. You can find

more advanced samples for JavaScript and TypeScript on GitHub.

To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Create a new function called analyze_example() , which calls the beginAnalyze()  function. The result will be a

long running operation which will be polled for results.

https://github.com/Azure/azure-sdk-for-js/blob/master/sdk/textanalytics/ai-text-analytics/samples/v5/javascript/beginAnalyzeActions.js
https://github.com/Azure/azure-sdk-for-js/blob/master/sdk/textanalytics/ai-text-analytics/samples/v5/typescript/src/beginAnalyzeActions.ts


async function analyze_example(client) {
    const documents = [
        "Microsoft was founded by Bill Gates and Paul Allen.",
    ];

    const actions = {
        recognizeEntitiesActions: [{ modelVersion: "latest" }],
        extractKeyPhrasesActions: [{ modelVersion: "latest" }]
    };
    const poller = await client.beginAnalyzeActions(documents, actions, "en");

    console.log(
        `The analyze batch actions operation was created on ${poller.getOperationState().createdOn}`
    );
    console.log(
        `The analyze batch actions operation results will expire on ${poller.getOperationState().expiresOn
        }`
    );
    const resultPages = await poller.pollUntilDone();
    for await (const page of resultPages) {
        const entitiesAction = page.recognizeEntitiesResults[0];
        if (!entitiesAction.error) {
            for (const doc of entitiesAction.results) {
                console.log(`- Document ${doc.id}`);
                if (!doc.error) {
                    console.log("\tEntities:");
                    for (const entity of doc.entities) {
                        console.log(`\t- Entity ${entity.text} of type ${entity.category}`);
                    }
                } else {
                    console.error("\tError:", doc.error);
                }
            }
        }
    }
    for await (const page of resultPages) {
        const keyPhrasesAction = page.extractKeyPhrasesResults[0];
        if (!keyPhrasesAction.error) {
            for (const doc of keyPhrasesAction.results) {
                console.log(`- Document ${doc.id}`);
                if (!doc.error) {
                    console.log("\tKey phrases:");
                    for (const phrase of doc.keyPhrases) {
                        console.log(`\t- ${phrase}`);
                    }
                } else {
                    console.error("\tError:", doc.error);
                }
            }
        }
    }
}
analyze_example(textAnalyticsClient)

  OutputOutput



The analyze batch actions operation was created on Fri Jun 18 2021 12:34:52 GMT-0700 (Pacific Daylight Time)
The analyze batch actions operation results will expire on Sat Jun 19 2021 12:34:52 GMT-0700 (Pacific 
Daylight Time)
- Document 0
        Entities:
        - Entity Microsoft of type Organization
        - Entity Bill Gates of type Person
        - Entity Paul Allen of type Person
- Document 0
        Key phrases:
        - Bill Gates
        - Paul Allen
        - Microsoft

node index.js

IMPORTANTIMPORTANT

 

 

 Prerequisites

 Setting up
  Install the client libraryInstall the client library

 

You can also use the Analyze operation to perform NER, key phrase extraction, sentiment analysis and detect PII.

See the Analyze samples for JavaScript and TypeScript on GitHub.

Run the application with the node  command on your quickstart file.

The latest stable version of the Text Analytics API is 3.1 .

The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For

production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See

the reference documentation below. If you want to use Text Analytics for health or Asynchronous operations, see the

examples on Github for C#, Python or Java

Be sure to only follow the instructions for the version you are using.

 

Version 3.1

Version 3.0

v3.1 Reference documentation | v3.1 Library source code | v3.1 Package (PiPy) | v3.1 Samples

Azure subscription - Create one for free

Python 3.x

Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key

and endpoint. After it deploys, click Go to resourceGo to resource.

To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

You will need the key and endpoint from the resource you create to connect your application to the

Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

You can use the free pricing tier ( F0 ) to try the service, and upgrade later to a paid tier for production.

After installing Python, you can install the client library with:

Version 3.1

Version 3.0

https://github.com/Azure/azure-sdk-for-js/blob/master/sdk/textanalytics/ai-text-analytics/samples/v5/javascript/beginAnalyzeActions.js
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples/v5/typescript/src
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://docs.microsoft.com/en-us/python/api/azure-ai-textanalytics/azure.ai.textanalytics?preserve-view=true&view=azure-python-preview
https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/textanalytics/azure-ai-textanalytics
https://pypi.org/project/azure-ai-textanalytics/5.1.0/
https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/textanalytics/azure-ai-textanalytics/samples
https://azure.microsoft.com/free/cognitive-services
https://www.python.org/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics


 

pip install azure-ai-textanalytics==5.1.0

TIPTIP

  Create a new python applicationCreate a new python application

IMPORTANTIMPORTANT

key = "<paste-your-text-analytics-key-here>"
endpoint = "<paste-your-text-analytics-endpoint-here>"

 Object model
 

 

 Code examples

 

 

Want to view the whole quickstart code file at once? You can find it on GitHub, which contains the code examples in this

quickstart.

Create a new Python file and create variables for your resource's Azure endpoint and subscription key.

Go to the Azure portal. If the Text Analytics resource you created in the PrerequisitesPrerequisites  section deployed successfully, click

the Go to ResourceGo to Resource button under Next StepsNext Steps . You can find your key and endpoint in the resource's key andkey and

endpointendpoint  page, under resource managementresource management .

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

Version 3.1

Version 3.0

The Text Analytics client is a TextAnalyticsClient  object that authenticates to Azure. The client provides several

methods for analyzing text.

When processing text is sent to the API as a list of documents , which is either as a list of string, a list of dict-like

representation, or as a list of TextDocumentInput/DetectLanguageInput . A dict-like  object contains a

combination of id , text , and language/country_hint . The text  attribute stores the text to be analyzed in the

origin country_hint , and the id  can be any value.

The response object is a list containing the analysis information for each document.

These code snippets show you how to do the following tasks with the Text Analytics client library for Python:

Version 3.1

Version 3.0

Authenticate the client

Sentiment Analysis

Opinion mining

Language detection

Named Entity recognition

Personally Identifiable Information recognition

https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/python/TextAnalytics/python-v3-client-library.py
https://docs.microsoft.com/en-us/azure/key-vault/general/overview


 Authenticate the client
 

 

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

def authenticate_client():
    ta_credential = AzureKeyCredential(key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

 Sentiment analysis
 

 

def sentiment_analysis_example(client):

    documents = ["I had the best day of my life. I wish you were there with me."]
    response = client.analyze_sentiment(documents=documents)[0]
    print("Document Sentiment: {}".format(response.sentiment))
    print("Overall scores: positive={0:.2f}; neutral={1:.2f}; negative={2:.2f} \n".format(
        response.confidence_scores.positive,
        response.confidence_scores.neutral,
        response.confidence_scores.negative,
    ))
    for idx, sentence in enumerate(response.sentences):
        print("Sentence: {}".format(sentence.text))
        print("Sentence {} sentiment: {}".format(idx+1, sentence.sentiment))
        print("Sentence score:\nPositive={0:.2f}\nNeutral={1:.2f}\nNegative={2:.2f}\n".format(
            sentence.confidence_scores.positive,
            sentence.confidence_scores.neutral,
            sentence.confidence_scores.negative,
        ))
          
sentiment_analysis_example(client)

  OutputOutput

Entity linking

Key phrase extraction

Version 3.1

Version 3.0

Create a function to instantiate the TextAnalyticsClient  object with your key  AND endpoint  created above.

Then create a new client.

Version 3.1

Version 3.0

Create a new function called sentiment_analysis_example()  that takes the client as an argument, then calls the 

analyze_sentiment()  function. The returned response object will contain the sentiment label and score of the

entire input document, as well as a sentiment analysis for each sentence.



Document Sentiment: positive
Overall scores: positive=1.00; neutral=0.00; negative=0.00 

Sentence: I had the best day of my life.
Sentence 1 sentiment: positive
Sentence score:
Positive=1.00
Neutral=0.00
Negative=0.00

Sentence: I wish you were there with me.
Sentence 2 sentiment: neutral
Sentence score:
Positive=0.21
Neutral=0.77
Negative=0.02

 Opinion mining
 

 

Version 3.1

Version 3.0

In order to do sentiment analysis with opinion mining, create a new function called 

sentiment_analysis_with_opinion_mining_example()  that takes the client as an argument, then calls the 

analyze_sentiment()  function with option flag show_opinion_mining=True . The returned response object will

contain not only the sentiment label and score of the entire input document with sentiment analysis for each

sentence, but also aspect and opinion level sentiment analysis.



def sentiment_analysis_with_opinion_mining_example(client):

    documents = [
        "The food and service were unacceptable, but the concierge were nice"
    ]

    result = client.analyze_sentiment(documents, show_opinion_mining=True)
    doc_result = [doc for doc in result if not doc.is_error]

    positive_reviews = [doc for doc in doc_result if doc.sentiment == "positive"]
    negative_reviews = [doc for doc in doc_result if doc.sentiment == "negative"]

    positive_mined_opinions = []
    mixed_mined_opinions = []
    negative_mined_opinions = []

    for document in doc_result:
        print("Document Sentiment: {}".format(document.sentiment))
        print("Overall scores: positive={0:.2f}; neutral={1:.2f}; negative={2:.2f} \n".format(
            document.confidence_scores.positive,
            document.confidence_scores.neutral,
            document.confidence_scores.negative,
        ))
        for sentence in document.sentences:
            print("Sentence: {}".format(sentence.text))
            print("Sentence sentiment: {}".format(sentence.sentiment))
            print("Sentence score:\nPositive={0:.2f}\nNeutral={1:.2f}\nNegative={2:.2f}\n".format(
                sentence.confidence_scores.positive,
                sentence.confidence_scores.neutral,
                sentence.confidence_scores.negative,
            ))
            for mined_opinion in sentence.mined_opinions:
                target = mined_opinion.target
                print("......'{}' target '{}'".format(target.sentiment, target.text))
                print("......Target score:\n......Positive={0:.2f}\n......Negative={1:.2f}\n".format(
                    target.confidence_scores.positive,
                    target.confidence_scores.negative,
                ))
                for assessment in mined_opinion.assessments:
                    print("......'{}' assessment '{}'".format(assessment.sentiment, assessment.text))
                    print("......Assessment score:\n......Positive={0:.2f}\n......Negative=
{1:.2f}\n".format(
                        assessment.confidence_scores.positive,
                        assessment.confidence_scores.negative,
                    ))
            print("\n")
        print("\n")
          
sentiment_analysis_with_opinion_mining_example(client)

  OutputOutput



Document Sentiment: positive
Overall scores: positive=0.84; neutral=0.00; negative=0.16

Sentence: The food and service were unacceptable, but the concierge were nice
Sentence sentiment: positive
Sentence score:
Positive=0.84
Neutral=0.00
Negative=0.16

......'negative' target 'food'

......Target score:

......Positive=0.01

......Negative=0.99

......'negative' assessment 'unacceptable'

......Assessment score:

......Positive=0.01

......Negative=0.99

......'negative' target 'service'

......Target score:

......Positive=0.01

......Negative=0.99

......'negative' assessment 'unacceptable'

......Assessment score:

......Positive=0.01

......Negative=0.99

......'positive' target 'concierge'

......Target score:

......Positive=1.00

......Negative=0.00

......'positive' assessment 'nice'

......Assessment score:

......Positive=1.00

......Negative=0.00

Press any key to continue . . .

 Language detection
 

 

TIPTIP

Version 3.1

Version 3.0

Create a new function called language_detection_example()  that takes the client as an argument, then calls the 

detect_language()  function. The returned response object will contain the detected language in 

primary_language  if successful, and an error  if not.

In some cases it may be hard to disambiguate languages based on the input. You can use the country_hint  parameter

to specify a 2-letter country code. By default the API is using the "US" as the default countryHint, to remove this behavior

you can reset this parameter by setting this value to empty string country_hint : "" .



def language_detection_example(client):
    try:
        documents = ["Ce document est rédigé en Français."]
        response = client.detect_language(documents = documents, country_hint = 'us')[0]
        print("Language: ", response.primary_language.name)

    except Exception as err:
        print("Encountered exception. {}".format(err))
language_detection_example(client)

  OutputOutput

Language:  French

 Named Entity Recognition (NER)
 

 

NOTENOTE

def entity_recognition_example(client):

    try:
        documents = ["I had a wonderful trip to Seattle last week."]
        result = client.recognize_entities(documents = documents)[0]

        print("Named Entities:\n")
        for entity in result.entities:
            print("\tText: \t", entity.text, "\tCategory: \t", entity.category, "\tSubCategory: \t", 
entity.subcategory,
                    "\n\tConfidence Score: \t", round(entity.confidence_score, 2), "\tLength: \t", 
entity.length, "\tOffset: \t", entity.offset, "\n")

    except Exception as err:
        print("Encountered exception. {}".format(err))
entity_recognition_example(client)

  OutputOutput

Version 3.1

Version 3.0

In version 3.1 :

Entity linking is a separate request than NER.

Create a new function called entity_recognition_example  that takes the client as an argument, then calls the 

recognize_entities()  function and iterates through the results. The returned response object will contain the

list of detected entities in entity  if successful, and an error  if not. For each detected entity, print its Category

and Sub-Category if exists.



Named Entities:

        Text:    trip   Category:        Event  SubCategory:     None
        Confidence Score:        0.61   Length:          4      Offset:          18

        Text:    Seattle        Category:        Location       SubCategory:     GPE
        Confidence Score:        0.82   Length:          7      Offset:          26

        Text:    last week      Category:        DateTime       SubCategory:     DateRange
        Confidence Score:        0.8    Length:          9      Offset:          34

 Personally Identifiable Information (PII) recognition

def pii_recognition_example(client):
    documents = [
        "The employee's SSN is 859-98-0987.",
        "The employee's phone number is 555-555-5555."
    ]
    response = client.recognize_pii_entities(documents, language="en")
    result = [doc for doc in response if not doc.is_error]
    for doc in result:
        print("Redacted Text: {}".format(doc.redacted_text))
        for entity in doc.entities:
            print("Entity: {}".format(entity.text))
            print("\tCategory: {}".format(entity.category))
            print("\tConfidence Score: {}".format(entity.confidence_score))
            print("\tOffset: {}".format(entity.offset))
            print("\tLength: {}".format(entity.length))
pii_recognition_example(client)

  OutputOutput

Redacted Text: The employee's SSN is ***********.
Entity: 859-98-0987
        Category: U.S. Social Security Number (SSN)
        Confidence Score: 0.65
        Offset: 22
        Length: 11
Redacted Text: The employee's phone number is ************.
Entity: 555-555-5555
        Category: Phone Number
        Confidence Score: 0.8
        Offset: 31
        Length: 12

 Entity linking
 

 

Create a new function called pii_recognition_example  that takes the client as an argument, then calls the 

recognize_pii_entities()  function and iterates through the results. The returned response object will contain

the list of detected entities in entity  if successful, and an error  if not. For each detected entity, print its

Category and Sub-Category if exists.

Version 3.1

Version 3.0

Create a new function called entity_linking_example()  that takes the client as an argument, then calls the 

recognize_linked_entities()  function and iterates through the results. The returned response object will contain

the list of detected entities in entities  if successful, and an error  if not. Since linked entities are uniquely



def entity_linking_example(client):

    try:
        documents = ["""Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, 
        to develop and sell BASIC interpreters for the Altair 8800. 
        During his career at Microsoft, Gates held the positions of chairman,
        chief executive officer, president and chief software architect, 
        while also being the largest individual shareholder until May 2014."""]
        result = client.recognize_linked_entities(documents = documents)[0]

        print("Linked Entities:\n")
        for entity in result.entities:
            print("\tName: ", entity.name, "\tId: ", entity.data_source_entity_id, "\tUrl: ", entity.url,
            "\n\tData Source: ", entity.data_source)
            print("\tMatches:")
            for match in entity.matches:
                print("\t\tText:", match.text)
                print("\t\tConfidence Score: {0:.2f}".format(match.confidence_score))
                print("\t\tOffset: {}".format(match.offset))
                print("\t\tLength: {}".format(match.length))
            
    except Exception as err:
        print("Encountered exception. {}".format(err))
entity_linking_example(client)

  OutputOutput

identified, occurrences of the same entity are grouped under a entity  object as a list of match  objects.



Linked Entities:

        Name:  Microsoft        Id:  Microsoft  Url:  https://en.wikipedia.org/wiki/Microsoft
        Data Source:  Wikipedia
        Matches:
                Text: Microsoft
                Confidence Score: 0.55
                Offset: 0
                Length: 9
                Text: Microsoft
                Confidence Score: 0.55
                Offset: 168
                Length: 9
        Name:  Bill Gates       Id:  Bill Gates         Url:  https://en.wikipedia.org/wiki/Bill_Gates
        Data Source:  Wikipedia
        Matches:
                Text: Bill Gates
                Confidence Score: 0.63
                Offset: 25
                Length: 10
                Text: Gates
                Confidence Score: 0.63
                Offset: 179
                Length: 5
        Name:  Paul Allen       Id:  Paul Allen         Url:  https://en.wikipedia.org/wiki/Paul_Allen
        Data Source:  Wikipedia
        Matches:
                Text: Paul Allen
                Confidence Score: 0.60
                Offset: 40
                Length: 10
        Name:  April 4  Id:  April 4    Url:  https://en.wikipedia.org/wiki/April_4
        Data Source:  Wikipedia
        Matches:
                Text: April 4
                Confidence Score: 0.32
                Offset: 54
                Length: 7
        Name:  BASIC    Id:  BASIC      Url:  https://en.wikipedia.org/wiki/BASIC
        Data Source:  Wikipedia
        Matches:
                Text: BASIC
                Confidence Score: 0.33
                Offset: 98
                Length: 5
        Name:  Altair 8800      Id:  Altair 8800        Url:  https://en.wikipedia.org/wiki/Altair_8800
        Data Source:  Wikipedia
        Matches:
                Text: Altair 8800
                Confidence Score: 0.88
                Offset: 125
                Length: 11

 Key phrase extraction
 

 

Version 3.1

Version 3.0

Create a new function called key_phrase_extraction_example()  that takes the client as an argument, then calls

the extract_key_phrases()  function. The result will contain the list of detected key phrases in key_phrases  if

successful, and an error  if not. Print any detected key phrases.



def key_phrase_extraction_example(client):

    try:
        documents = ["My cat might need to see a veterinarian."]

        response = client.extract_key_phrases(documents = documents)[0]

        if not response.is_error:
            print("\tKey Phrases:")
            for phrase in response.key_phrases:
                print("\t\t", phrase)
        else:
            print(response.id, response.error)

    except Exception as err:
        print("Encountered exception. {}".format(err))
        
key_phrase_extraction_example(client)

  OutputOutput

    Key Phrases:
         cat
         veterinarian

 Extract health entities

C a u t i o nC a u t i o n

 

 

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The

below sample shows a basic example. You can find a more advanced sample on GitHub.

To use the health operation, make sure your Azure resource is using the S standard pricing tier.

Version 3.1

Version 3.0

https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_healthcare_entities.py


def health_example(client):
    documents = [
        """
        Patient needs to take 50 mg of ibuprofen.
        """
    ]

    poller = client.begin_analyze_healthcare_entities(documents)
    result = poller.result()

    docs = [doc for doc in result if not doc.is_error]

    for idx, doc in enumerate(docs):
        for entity in doc.entities:
            print("Entity: {}".format(entity.text))
            print("...Normalized Text: {}".format(entity.normalized_text))
            print("...Category: {}".format(entity.category))
            print("...Subcategory: {}".format(entity.subcategory))
            print("...Offset: {}".format(entity.offset))
            print("...Confidence score: {}".format(entity.confidence_score))
        for relation in doc.entity_relations:
            print("Relation of type: {} has the following roles".format(relation.relation_type))
            for role in relation.roles:
                print("...Role '{}' with entity '{}'".format(role.name, role.entity.text))
        print("------------------------------------------")
health_example(client)

  OutputOutput

Entity: 50 mg
...Normalized Text: None
...Category: Dosage
...Subcategory: None
...Offset: 31
...Confidence score: 1.0
Entity: ibuprofen
...Normalized Text: ibuprofen
...Category: MedicationName
...Subcategory: None
...Offset: 40
...Confidence score: 1.0
Relation of type: DosageOfMedication has the following roles
...Role 'Dosage' with entity '50 mg'
...Role 'Medication' with entity 'ibuprofen'

 Use the API asynchronously with the Analyze operation
 

 

C a u t i o nC a u t i o n

Version 3.1

Version 3.0

You can use the Analyze operation to perform asynchronous batch requests for : NER, key phrase extraction,

sentiment analysis, and PII detection. The below sample shows a basic example on one operation. You can find a

more advanced sample on GitHub.

To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Create a new function called analyze_batch_example()  that takes the client as an argument, then calls the 

begin_analyze_actions()  function. The result will be a long running operation which will be polled for results.

https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_actions.py


from azure.ai.textanalytics import (
    RecognizeEntitiesAction,
    ExtractKeyPhrasesAction
)

def analyze_batch_example(client):
        documents = [
            "Microsoft was founded by Bill Gates and Paul Allen."
        ]

        poller = client.begin_analyze_actions(
            documents,
            display_name="Sample Text Analysis",
            actions=[RecognizeEntitiesAction(), ExtractKeyPhrasesAction()]
        )

        result = poller.result()
        action_results = [action_result for action_result in list(result)]
        first_action_result = action_results[0][0]
        print("Results of Entities Recognition action:")

        for entity in first_action_result.entities:
            print("Entity: {}".format(entity.text))
            print("...Category: {}".format(entity.category))
            print("...Confidence Score: {}".format(entity.confidence_score))
            print("...Offset: {}".format(entity.offset))
            print("...Length: {}".format(entity.length))
        print("------------------------------------------")

        second_action_result = action_results[0][1]
        print("Results of Key Phrase Extraction action:")
        
        for key_phrase in second_action_result.key_phrases:
            print("Key Phrase: {}\n".format(key_phrase))
        print("------------------------------------------")

analyze_batch_example(client)

  OutputOutput

Results of Entities Recognition action:
Entity: Microsoft
...Category: Organization
...Confidence Score: 1.0
...Offset: 0
...Length: 9
Entity: Bill Gates
...Category: Person
...Confidence Score: 1.0
...Offset: 25
...Length: 10
Entity: Paul Allen
...Category: Person
...Confidence Score: 1.0
...Offset: 40
...Length: 10
------------------------------------------
Results of Key Phrase Extraction action:
Key Phrase: Bill Gates

Key Phrase: Paul Allen

Key Phrase: Microsoft

------------------------------------------



IMPORTANTIMPORTANT

 

 

 Prerequisites

NOTENOTE

PA RA M ET ERPA RA M ET ER DESC RIP T IO NDESC RIP T IO N

-X POST <endpoint> Specifies your endpoint for accessing the API.

-H Content-Type: application/json The content type for sending JSON data.

-H "Ocp-Apim-Subscription-Key:<key> Specifies the key for accessing the API.

-d <documents> The JSON containing the documents you want to send.

 Sentiment Analysis

The latest stable version of the Text Analytics API is 3.1 .

Be sure to only follow the instructions for the version you are using.

Version 3.1

Version 3.0

v3.1 Reference documentation

The current version of cURL.

Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key

and endpoint. After it deploys, click Go to resourceGo to resource.

You will need the key and endpoint from the resource you create to connect your application to the

Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

You can use the free pricing tier ( F0 ) to try the service, and upgrade later to a paid tier for production.

The following BASH examples use the \  line continuation character. If your console or terminal uses a different line

continuation character, use that character.

You can find language specific samples on GitHub.

Go to the Azure portal and find the key and endpoint for the Text Analytics resource you created in the prerequisites.

They will be located on the resource's key and endpointkey and endpoint  page, under resource managementresource management . Then replace the

strings in the code below with your key and endpoint. To call the Text Analytics API, you need the following

information:

The following cURL commands are executed from a BASH shell. Edit these commands with your own resource

name, resource key, and JSON values.

1. Copy the command into a text editor.

2. Make the following changes in the command where needed:

3. Open a command prompt window.

a. Replace the value <your-text-analytics-key-here>  with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here>  with the your own

endpoint URL.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/
https://curl.haxx.se/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://github.com/Azure-Samples/cognitive-services-quickstart-code


 

 

NOTENOTE

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/sentiment?opinionMining=true \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", text: "The customer service here is really good."}]}'

  JSON responseJSON response

4. Paste the command from the text editor into the command prompt window, and then run the command.

version 3.1

version 3.0

The below example includes a request for the Opinion Mining feature of Sentiment Analysis using the 

opinionMining=true  parameter, which provides granular information about assessments (adjectives) related to targets

(nouns) in the text.



{
   "documents":[
      {
         "id":"1",
         "sentiment":"positive",
         "confidenceScores":{
            "positive":1.0,
            "neutral":0.0,
            "negative":0.0
         },
         "sentences":[
            {
               "sentiment":"positive",
               "confidenceScores":{
                  "positive":1.0,
                  "neutral":0.0,
                  "negative":0.0
               },
               "offset":0,
               "length":41,
               "text":"The customer service here is really good.",
               "targets":[
                  {
                     "sentiment":"positive",
                     "confidenceScores":{
                        "positive":1.0,
                        "negative":0.0
                     },
                     "offset":4,
                     "length":16,
                     "text":"customer service",
                     "relations":[
                        {
                           "relationType":"assessment",
                           "ref":"#/documents/0/sentences/0/assessments/0"
                        }
                     ]
                  }
               ],
               "assessments":[
                  {
                     "sentiment":"positive",
                     "confidenceScores":{
                        "positive":1.0,
                        "negative":0.0
                     },
                     "offset":36,
                     "length":4,
                     "text":"good",
                     "isNegated":false
                  }
               ]
            }
         ],
         "warnings":[
            
         ]
      }
   ],
   "errors":[
      
   ],
   "modelVersion":"2020-04-01"
}

 



Language detection

 

 

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/languages/ \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", text: "This is a document written in English."}]}'

  JSON responseJSON response

{
   "documents":[
      {
         "id":"1",
         "detectedLanguage":{
            "name":"English",
            "iso6391Name":"en",
            "confidenceScore":1.0
         },
         "warnings":[
            
         ]
      }
   ],
   "errors":[
      
   ],
   "modelVersion":"2021-01-05"
}

 Named Entity Recognition (NER)

 

 

1. Copy the command into a text editor.

2. Make the following changes in the command where needed:

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

a. Replace the value <your-text-analytics-key-here>  with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here>  with the your own

endpoint URL.

version 3.1

version 3.0

1. Copy the command into a text editor.

2. Make the following changes in the command where needed:

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

a. Replace the value <your-text-analytics-key-here>  with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here>  with the your own

endpoint URL.

version 3.1

version 3.0



curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/entities/recognition/general \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", language:"en", text: "I had a wonderful trip to Seattle last week."}]}'

  JSON responseJSON response

{
   "documents":[
      {
         "id":"1",
         "entities":[
            {
               "text":"Seattle",
               "category":"Location",
               "subcategory":"GPE",
               "offset":26,
               "length":7,
               "confidenceScore":0.99
            },
            {
               "text":"last week",
               "category":"DateTime",
               "subcategory":"DateRange",
               "offset":34,
               "length":9,
               "confidenceScore":0.8
            }
         ],
         "warnings":[
            
         ]
      }
   ],
   "errors":[
      
   ],
   "modelVersion":"2021-01-15"
}

  Detecting personally identifying informationDetecting personally identifying information

curl -X POST https://your-text-analytics-endpoint-here>/text/analytics/v3.1/entities/recognition/pii \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", language:"en", text: "Call our office at 312-555-1234, or send an email to 
support@contoso.com"}]}'

  JSON responseJSON response

1. Copy the command into a text editor.

2. Make the following changes in the command where needed:

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

a. Replace the value <your-text-analytics-key-here>  with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here>  with the your own

endpoint URL.



{
   "documents":[
      {
         "redactedText":"Call our office at ************, or send an email to *******************",
         "id":"1",
         "entities":[
            {
               "text":"312-555-1234",
               "category":"PhoneNumber",
               "offset":19,
               "length":12,
               "confidenceScore":0.8
            },
            {
               "text":"support@contoso.com",
               "category":"Email",
               "offset":53,
               "length":19,
               "confidenceScore":0.8
            }
         ],
         "warnings":[
            
         ]
      }
   ],
   "errors":[
      
   ],
   "modelVersion":"2021-01-15"
}

 Entity linking

 

 

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/entities/linking \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", language:"en", text: "Microsoft was founded by Bill Gates and Paul Allen on 
April 4, 1975."}]}'

  JSON responseJSON response

{
   "documents":[
      {
         "id":"1",
         "entities":[
            {

1. Copy the command into a text editor.

2. Make the following changes in the command where needed:

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

a. Replace the value <your-text-analytics-key-here>  with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here>  with the your own

endpoint URL.

version 3.1

version 3.0



               "bingId":"a093e9b9-90f5-a3d5-c4b8-5855e1b01f85",
               "name":"Microsoft",
               "matches":[
                  {
                     "text":"Microsoft",
                     "offset":0,
                     "length":9,
                     "confidenceScore":0.48
                  }
               ],
               "language":"en",
               "id":"Microsoft",
               "url":"https://en.wikipedia.org/wiki/Microsoft",
               "dataSource":"Wikipedia"
            },
            {
               "bingId":"0d47c987-0042-5576-15e8-97af601614fa",
               "name":"Bill Gates",
               "matches":[
                  {
                     "text":"Bill Gates",
                     "offset":25,
                     "length":10,
                     "confidenceScore":0.52
                  }
               ],
               "language":"en",
               "id":"Bill Gates",
               "url":"https://en.wikipedia.org/wiki/Bill_Gates",
               "dataSource":"Wikipedia"
            },
            {
               "bingId":"df2c4376-9923-6a54-893f-2ee5a5badbc7",
               "name":"Paul Allen",
               "matches":[
                  {
                     "text":"Paul Allen",
                     "offset":40,
                     "length":10,
                     "confidenceScore":0.54
                  }
               ],
               "language":"en",
               "id":"Paul Allen",
               "url":"https://en.wikipedia.org/wiki/Paul_Allen",
               "dataSource":"Wikipedia"
            },
            {
               "bingId":"52535f87-235e-b513-54fe-c03e4233ac6e",
               "name":"April 4",
               "matches":[
                  {
                     "text":"April 4",
                     "offset":54,
                     "length":7,
                     "confidenceScore":0.38
                  }
               ],
               "language":"en",
               "id":"April 4",
               "url":"https://en.wikipedia.org/wiki/April_4",
               "dataSource":"Wikipedia"
            }
         ],
         "warnings":[
            
         ]
      }
   ],



   ],
   "errors":[
      
   ],
   "modelVersion":"2020-02-01"
}

 Key phrase extraction

 

 

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/keyPhrases \
-H "Content-Type: application/json" \
-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", language:"en", text: "I had a wonderful trip to Seattle last week."}]}'

{
   "documents":[
      {
         "id":"1",
         "keyPhrases":[
            "wonderful trip",
            "Seattle"
         ],
         "warnings":[
            
         ]
      }
   ],
   "errors":[
      
   ],
   "modelVersion":"2021-06-01"
}

 Clean up resources

 Next steps

1. Copy the command into a text editor.

2. Make the following changes in the command where needed:

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

a. Replace the value <your-text-analytics-key-here>  with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here>  with the your own

endpoint URL.

version 3.1

version 3.0

If you want to clean up and remove a Cognitive Services subscription, you can delete the resource or resource

group. Deleting the resource group also deletes any other resources associated with it.

Portal

Azure CLI

Explore a solution

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account-cli


Text Analytics overview

Sentiment analysis

Entity recognition

Detect language

Language recognition



   

 

How to call the Text Analytics REST API
 7/8/2021 • 10 minutes to read • Edit Online

 Create a Text Analytics resource

NOTENOTE

 Change your pricing tier

 Using the API synchronously

 Using the API asynchronously

In this article, we use the Text Analytics REST API and Postman to demonstrate key concepts. The API provides

several synchronous and asynchronous endpoints for using the features of the service.

You will need a Text Analytics resource using a Standard (S) pricing tier if you want to use the /analyze  or /health

endpoints. The /analyze  endpoint is included in your pricing tier.

Before you use the Text Analytics API, you will need to create a Azure resource with a key and endpoint for your

applications.

1. First, go to the Azure portal and create a new Text Analytics resource, if you don't have one already.

Choose a pricing tier.

2. Select the region you want to use for your endpoint.

3. Create the Text Analytics resource and go to the “Keys and Endpoint” section under Resource

Management in the left of the page. Copy the key to be used later when you call the APIs. You'll add this

later as a value for the Ocp-Apim-Subscription-Key  header.

4. To check the number of text records that have been sent using your Text Analytics resource:

a. Navigate to your Text Analytics resource in the Azure portal.

b. Click Metr icsMetr ics , located under Monitor ingMonitor ing in the left navigation menu.

c. Select Processed text records in the dropdown box for Metr icMetr ic.

A text record is a unit of input text up to 1000 characters. For example, 1500 characters submitted as input text

will count as 2 text records.

If you have an existing Text Analytics resource using the S0 through S4 pricing tier, you should update it to use

the Standard (S) pricing tier. The S0 through S4 pricing tiers will be retired. To update your resource's pricing:

1. Navigate to your Text Analytics resource in the Azure portal.

2. Select Pr icing tierPr icing tier  in the left navigation menu. It will be below RESOURCE MANAGEMENTRESOURCE MANAGEMENT.

3. Choose the Standard (S) pricing tier. Then click SelectSelect.

You can also create a new Text Analytics resource with the Standard (S) pricing tier, and migrate your

applications to use the credentials for the new resource.

You can call Text Analytics synchronously (for low latency scenarios). You have to call each API (feature)

separately when using synchronous API. If you need to call multiple features then check out below section on

how to call Text Analytics asynchronously.

The Text Analytics v3.1 API provides two asynchronous endpoints:

The /analyze  endpoint for Text Analytics allows you to analyze the same set of text documents with

multiple text analytics features in one API call. Previously, to use multiple features you would need to

make separate API calls for each operation. Consider this capability when you need to analyze large sets

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-call-api.md
https://www.postman.com/downloads/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://portal.azure.com/


F EAT UREF EAT URE SY N C H RO N O USSY N C H RO N O US A SY N C H RO N O USA SY N C H RO N O US

Language detection ✔

Sentiment analysis ✔ ✔*

Opinion mining ✔ ✔*

Key phrase extraction ✔ ✔*

Named Entity Recognition (including
PII and PHI)

✔ ✔*

Entity linking ✔ ✔*

Text Analytics for health (container) ✔

Text Analytics for health (API) ✔

TIPTIP

 API request formats

 

 

  Synchronous requestsSynchronous requests

EL EM EN TEL EM EN T VA L ID VA L UESVA L ID VA L UES REQ UIRED?REQ UIRED? USA GEUSA GE

id The data type is string, but
in practice document IDs
tend to be integers.

Required The system uses the IDs
you provide to structure
the output. Language
codes, key phrases, and
sentiment scores are
generated for each ID in the
request.

of documents with more than one Text Analytics feature.

The /health  endpoint for Text Analytics for health, which can extract and label relevant medical

information from clinical documents.

See the table below to see which features can be used asynchronously. Note that only a few features can be

called from the /analyze  endpoint.

*  - Called asynchronously through the /analyze  endpoint.

For detailed API technical documentation and to see it in action, use the following links. You can also send POST requests

from the built-in API test console. No setup is required, simply paste your resource key and JSON documents into the

request:

Latest stable API - v3.1

Previous stable API - v3.0

 

You can send both synchronous and asynchronous calls to the Text Analytics API.

Synchronous

Asynchronous

The format for API requests is the same for all synchronous operations. Documents are submitted in a JSON

object as raw unstructured text. XML is not supported. The JSON schema consists of the elements described

below.

https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0


text Unstructured raw text, up
to 5,120 characters.

Required For language detection, text
can be expressed in any
language. For sentiment
analysis, key phrase
extraction and entity
identification, the text must
be in a supported language.

language 2-character ISO 639-1 code
for a supported language

Varies Required for sentiment
analysis, key phrase
extraction, and entity
linking; optional for
language detection. There is
no error if you exclude it,
but the analysis is
weakened without it. The
language code should
correspond to the text

you provide.

EL EM EN TEL EM EN T VA L ID VA L UESVA L ID VA L UES REQ UIRED?REQ UIRED? USA GEUSA GE

{
  "documents": [
    {
      "language": "en",
      "id": "1",
      "text": "Sample text to be sent to the text analytics api."
    }
  ]
}

TIPTIP

 Set up a request

TIPTIP

 

 

  Endpoints for sending synchronous requestsEndpoints for sending synchronous requests

F EAT UREF EAT URE REQ UEST  T Y P EREQ UEST  T Y P E RESO URC E EN DP O IN T SRESO URC E EN DP O IN T S

Language Detection POST <your-text-analytics-
resource>/text/analytics/v3.1/languages

Sentiment Analysis POST <your-text-analytics-
resource>/text/analytics/v3.1/sentiment

The following is an example of an API request for the synchronous Text Analytics endpoints.

See the Data and rate limits article for information on the rates and size limits for sending data to the Text Analytics API.

In Postman (or another web API test tool), add the endpoint for the feature you want to use. Use the table below

to find the appropriate endpoint format, and replace <your-text-analytics-resource>  with your resource

endpoint. For example:

You can call v3.0 of the below synchronous endpoints by replacing /v3.1  with /v3.0/ .

https://my-resource.cognitiveservices.azure.com/text/analytics/v3.1/languages

Synchronous

Asynchronous

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes


Opinion Mining POST <your-text-analytics-
resource>/text/analytics/v3.1/sentiment?
opinionMining=true

Key Phrase Extraction POST <your-text-analytics-
resource>/text/analytics/v3.1/keyPhrases

Named Entity Recognition - General POST <your-text-analytics-
resource>/text/analytics/v3.1/entities/recognition/general

Named Entity Recognition - PII POST <your-text-analytics-
resource>/text/analytics/v3.1/entities/recognition/pii

Named Entity Recognition - PHI POST <your-text-analytics-
resource>/text/analytics/v3.1/entities/recognition/pii?
domain=phi

Entity Linking POST <your-text-analytics-
resource>/text/analytics/v3.1/entities/linking

F EAT UREF EAT URE REQ UEST  T Y P EREQ UEST  T Y P E RESO URC E EN DP O IN T SRESO URC E EN DP O IN T S

 Send the request

After you have your endpoint, in Postman (or another web API test tool):

1. Choose the request type for the feature you want to use.

2. Paste in the endpoint of the proper operation you want from the above table.

3. Set the three request headers:

Ocp-Apim-Subscription-Key : your access key, obtained from Azure portal

Content-Type : application/json

Accept : application/json

If you're using Postman, your request should look similar to the following screenshot, assuming a 

/keyPhrases  endpoint.

4. Choose rawraw  for the format of the BodyBody

5. Paste in some JSON documents in a valid format. Use the examples in the API request formatAPI request format section

above, and for more information and examples, see the topics below:

Language detection

Key phrase extraction

Sentiment analysis

Entity recognition



 Example API responses
 

 

  Example responses for synchronous operationExample responses for synchronous operation

 See also

Submit the API request. If you made the call to a synchronous endpoint, the response will be displayed

immediately, as a single JSON document, with an item for each document ID provided in the request.

If you made the call to the asynchronous /analyze  or /health  endpoints, check that you received a 202

response code. you will need to get the response to view the results:

1. In the API response, find the Operation-Location  from the header, which identifies the job you sent to the

API.

2. Create a GET request for the endpoint you used. refer to the table above for the endpoint format, and

review the API reference documentation. For example:

https://my-resource.cognitiveservices.azure.com/text/analytics/v3.1/analyze/jobs/<Operation-Location>

3. Add the Operation-Location  to the request.

4. The response will be a single JSON document, with an item for each document ID provided in the

request.

Please note that for both asynchronous /analyze  or /health  operations, the results from the GET request in

step 2 above are available for 24 hours from the time the job was created. This time is indicated by the 

expirationDateTime  value in the GET response. After this time period, the results are purged and are no longer

available for retrieval.

Synchronous

Asynchronous

The synchronous endpoint responses will vary depending on the endpoint you use. See the following articles

for example responses.

Language detection

Key phrase extraction

Sentiment analysis

Entity recognition

Text Analytics overview

Model versions

Frequently asked questions (FAQ)

Text Analytics product page

Using the Text Analytics client library

What's new

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/AnalyzeStatus
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/text-analytics-resource-faq.html#body
https://go.microsoft.com/fwlink/?linkid=759712


   

 

Example: Detect language with Text Analytics
 7/8/2021 • 5 minutes to read • Edit Online

TIPTIP

 Preparation

{
    "documents": [
        {
            "id": "1",
            "text": "This document is in English."
        },
        {
            "id": "2",
            "text": "Este documento está en inglés."
        },
        {
            "id": "3",
            "text": "Ce document est en anglais."
        },
        {
            "id": "4",
            "text": "本文件为英文"
        },
        {
            "id": "5",
            "text": "Этот документ на английском языке."
        }
    ]
}

 

The Language Detection feature of the Azure Text Analytics REST API evaluates text input for each document and

returns language identifiers with a score that indicates the strength of the analysis.

This capability is useful for content stores that collect arbitrary text, where language is unknown. You can parse

the results of this analysis to determine which language is used in the input document. The response also

returns a score that reflects the confidence of the model. The score value is between 0 and 1.

The Language Detection feature can detect a wide range of languages, variants, dialects, and some regional or

cultural languages. The exact list of languages for this feature isn't published.

If you have content expressed in a less frequently used language, you can try the Language Detection feature to

see if it returns a code. The response for languages that can't be detected is unknown .

Text Analytics also provides a Linux-based Docker container image for language detection, so you can install and run the

Text Analytics container close to your data.

You must have JSON documents in this format: ID and text.

The document size must be under 5,120 characters per document. You can have up to 1,000 items (IDs) per

collection. The collection is submitted in the body of the request. The following sample is an example of content

you might submit for language detection:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-language-detection.md
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages


Step 1: Structure the request

TIPTIP

 Step 2: POST the request

 Step 3: View the results

For more information on request definition, see Call the Text Analytics API. The following points are restated for

convenience:

Create a POST request. To review the API documentation for this request, see the Language Detection API.

Set the HTTP endpoint for language detection. Use either a Text Analytics resource on Azure or an

instantiated Text Analytics container. You must include /text/analytics/v3.1/languages  in the URL. For

example: https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/languages .

Set a request header to include the access key for Text Analytics operations.

In the request body, provide the JSON documents collection you prepared for this analysis.

Use Postman or open the API testing consoleAPI testing console in the documentation to structure a request and POST it to the service.

Analysis is performed upon receipt of the request. For information on the size and number of requests you can

send per minute and second, see the data limits article.

Recall that the service is stateless. No data is stored in your account. Results are returned immediately in the

response.

All POST requests return a JSON-formatted response with the IDs and detected properties.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the

output to a file on the local system. Then, import the output into an application that you can use to sort, search,

and manipulate the data.

Results for the example request should look like the following JSON document. Notice that it's one JSON

document with multiple items with each item representing the detection result for every document you submit.

Output is in English.

Language detection will return one predominant language for one document, along with it's ISO 639-1 name,

friendly name and confidence score. A positive score of 1.0 expresses the highest possible confidence level of

the analysis.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages
https://www.iso.org/standard/22109.html


{
    "documents": [
        {
            "id": "1",
            "detectedLanguage": {
                "name": "English",
                "iso6391Name": "en",
                "confidenceScore": 0.99
            },
            "warnings": []
        },
        {
            "id": "2",
            "detectedLanguage": {
                "name": "Spanish",
                "iso6391Name": "es",
                "confidenceScore": 0.91
            },
            "warnings": []
        },
        {
            "id": "3",
            "detectedLanguage": {
                "name": "French",
                "iso6391Name": "fr",
                "confidenceScore": 0.78
            },
            "warnings": []
        },
        {
            "id": "4",
            "detectedLanguage": {
                "name": "Chinese_Simplified",
                "iso6391Name": "zh_chs",
                "confidenceScore": 1.0
            },
            "warnings": []
        },
        {
            "id": "5",
            "detectedLanguage": {
                "name": "Russian",
                "iso6391Name": "ru",
                "confidenceScore": 1.0
            },
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-01-05"
}

  Ambiguous contentAmbiguous content
In some cases it may be hard to disambiguate languages based on the input. You can use the countryHint

parameter to specify an ISO 3166-1 alpha-2 country/region code. By default the API is using the "US" as the

default countryHint, to remove this behavior you can reset this parameter by setting this value to empty string 

countryHint = ""  .

For example, "Impossible" is common to both English and French and if given with limited context the response

will be based on the "US" country/region hint. If the origin of the text is known to be coming from France that

can be given as a hint.

InputInput

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


{
    "documents": [
        {
            "id": "1",
            "text": "impossible"
        },
        {
            "id": "2",
            "text": "impossible",
            "countryHint": "fr"
        }
    ]
}

{
    "documents":[
        {
            "detectedLanguage":{
                "confidenceScore":0.62,
                "iso6391Name":"en",
                "name":"English"
            },
            "id":"1",
            "warnings":[
                
            ]
        },
        {
            "detectedLanguage":{
                "confidenceScore":1.0,
                "iso6391Name":"fr",
                "name":"French"
            },
            "id":"2",
            "warnings":[
                
            ]
        }
    ],
    "errors":[
        
    ],
    "modelVersion":"2020-09-01"
}

The service now has additional context to make a better judgment:

OutputOutput

If the analyzer can't parse the input, it returns (Unknown) . An example is if you submit a text block that consists

solely of Arabic numerals.



{
    "documents": [
        {
            "id": "1",
            "detectedLanguage": {
                "name": "(Unknown)",
                "iso6391Name": "(Unknown)",
                "confidenceScore": 0.0
            },
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-01-05"
}

  Mixed-language contentMixed-language content

{
    "documents": [
        {
            "id": "1",
            "text": "Hello, I would like to take a class at your University. ¿Se ofrecen clases en español? 
Es mi primera lengua y más fácil para escribir. Que diriez-vous des cours en français?"
        }
    ]
}

{
    "documents": [
        {
            "id": "1",
            "detectedLanguage": {
                "name": "Spanish",
                "iso6391Name": "es",
                "confidenceScore": 0.88
            },
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-01-05"
}

 Summary

Mixed-language content within the same document returns the language with the largest representation in the

content, but with a lower positive rating. The rating reflects the marginal strength of the assessment. In the

following example, input is a blend of English, Spanish, and French. The analyzer counts characters in each

segment to determine the predominant language.

InputInput

OutputOutput

The resulting output consists of the predominant language, with a score of less than 1.0, which indicates a

weaker level of confidence.

In this article, you learned concepts and workflow for language detection by using Text Analytics in Azure

Cognitive Services. The following points were explained and demonstrated:



 See also

Language detection is available for a wide range of languages, variants, dialects, and some regional or

cultural languages.

JSON documents in the request body include an ID and text.

The POST request is to a /languages  endpoint by using a personalized access key and an endpoint that's

valid for your subscription.

Response output consists of language identifiers for each document ID. The output can be streamed to any

app that accepts JSON. Example apps include Excel and Power BI, to name a few.

Text Analytics overview

Using the Text Analytics client library

What's new

Model versions

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account


   

 

How to: Sentiment analysis and Opinion Mining
 7/8/2021 • 7 minutes to read • Edit Online

 Sentiment Analysis versions and features

F EAT UREF EAT URE SEN T IM EN T  A N A LY SIS V3. 0SEN T IM EN T  A N A LY SIS V3. 0 SEN T IM EN T  A N A LY SIS V3. 1SEN T IM EN T  A N A LY SIS V3. 1

Methods for single, and batch
requests

X X

Sentiment Analysis scores and labeling X X

Linux-based Docker container X

Opinion Mining X

 Sentiment Analysis

SEN T EN C E SEN T IM EN TSEN T EN C E SEN T IM EN T RET URN ED DO C UM EN T  L A B ELRET URN ED DO C UM EN T  L A B EL

At least one positive  sentence is in the document. The

rest of the sentences are neutral .

positive

At least one negative  sentence is in the document. The

rest of the sentences are neutral .

negative

At least one negative  sentence and at least one 

positive  sentence are in the document.

mixed

All sentences in the document are neutral . neutral

The Text Analytics API's Sentiment Analysis feature provides two ways for detecting positive and negative

sentiment. If you send a Sentiment Analysis request, the API will return sentiment labels (such as "negative",

"neutral" and "positive") and confidence scores at the sentence and document-level. You can also send Opinion

Mining requests using the Sentiment Analysis endpoint, which provides granular information about the

opinions related to words (such as the attributes of products or services) in the text.

The AI models used by the API are provided by the service, you just have to send content for analysis.

Sentiment Analysis in version 3.x applies sentiment labels to text, which are returned at a sentence and

document level, with a confidence score for each.

The labels are positive, negative, and neutral. At the document level, the mixed sentiment label also can be

returned. The sentiment of the document is determined below:

Confidence scores range from 1 to 0. Scores closer to 1 indicate a higher confidence in the label's classification,

while lower scores indicate lower confidence. For each document or each sentence, the predicted scores

associated with the labels (positive, negative and neutral) add up to 1. For more information, see the Text

Analytics transparency note.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-sentiment-analysis.md
https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note?context=/azure/cognitive-services/text-analytics/context/context


 Opinion Mining

 Sending a REST API request
  PreparationPreparation

 Structure the request

 

 

  Request endpointsRequest endpoints

NOTENOTE

Opinion Mining is a feature of Sentiment Analysis, starting in version 3.1. Also known as Aspect-based

Sentiment Analysis in Natural Language Processing (NLP), this feature provides more granular information

about the opinions related to attributes of products or services in text. The API surfaces opinions as a target

(noun or verb) and an assessment (adjective).

For example, if a customer leaves feedback about a hotel such as "The room was great, but the staff was

unfriendly.", Opinion Mining will locate targets (aspects) in the text, and their associated assessments (opinions)

and sentiments. Sentiment Analysis might only report a negative sentiment.

To get Opinion Mining in your results, you must include the opinionMining=true  flag in a request for sentiment

analysis. The Opinion Mining results will be included in the sentiment analysis response. Opinion mining is an

extension of Sentiment Analysis and is included in your current pricing tier.

Sentiment analysis produces a higher-quality result when you give it smaller amounts of text to work on. This is

opposite from key phrase extraction, which performs better on larger blocks of text. To get the best results from

both operations, consider restructuring the inputs accordingly.

You must have JSON documents in this format: ID, text, and language. Sentiment Analysis supports a wide range

of languages. For more information, see Supported languages.

Document size must be under 5,120 characters per document. For the maximum number of documents

permitted in a collection, see the data limits article under Concepts. The collection is submitted in the body of

the request.

Create a POST request. You can use Postman or the API testing consoleAPI testing console in the following reference links to

quickly structure and send one.

Version 3.1

Version 3.0

Sentiment Analysis v3.1 reference

Set the HTTPS endpoint for sentiment analysis by using either a Text Analytics resource on Azure or an

instantiated Text Analytics container. You must include the correct URL for the version you want to use. For

example:

You can find your key and endpoint for your Text Analytics resource on the Azure portal. They will be located on the

resource's Quick star tQuick star t  page, under resource managementresource management .

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/how-tos/opinion-mining.png#lightbox
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Sentiment


 

 

  Example request for Sentiment Analysis and Opinion MiningExample request for Sentiment Analysis and Opinion Mining

{
  "documents": [
    {
      "language": "en",
      "id": "1",
      "text": "The restaurant had great food and our waiter was friendly."
    }
  ]
}

  Post the requestPost the request

  View the resultsView the results

 

 

  Sentiment Analysis and Opinion Mining example responseSentiment Analysis and Opinion Mining example response

IMPORTANTIMPORTANT

Version 3.1

Version 3.0

Sentiment AnalysisSentiment Analysis

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/sentiment

Opinion MiningOpinion Mining

To get Opinion Mining results, you must include the opinionMining=true  parameter. For example:

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/sentiment?opinionMining=true

This parameter is set to false  by default.

Set a request header to include your Text Analytics API key. In the request body, provide the JSON documents

collection you prepared for this analysis.

The following is an example of content you might submit for sentiment analysis. The request format is the same

for both v3.0  and v3.1 .

Analysis is performed upon receipt of the request. For information on the size and number of requests you can

send per minute and second, see the data limits section in the overview.

The Text Analytics API is stateless. No data is stored in your account, and results are returned immediately in the

response.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the

output to a file on the local system. Then, import the output into an application that you can use to sort, search,

and manipulate the data. Due to multilingual and emoji support, the response may contain text offsets. See how

to process offsets for more information.

Version 3.1

Version 3.0

The following is a JSON example for using Opinion Mining with Sentiment Analysis, offered in v3.1 of the API. If you don't

request Opinion mining, the API response will be the same as the Version 3.0Version 3.0  tab.

Sentiment Analysis v3.1 can return response objects for both Sentiment Analysis and Opinion Mining.



{
  "documents": [
    {
      "id": "1",
      "sentiment": "positive",
      "confidenceScores": {
        "positive": 1,
        "neutral": 0,
        "negative": 0
      },
      "sentences": [
        {
          "sentiment": "positive",
          "confidenceScores": {
            "positive": 1,
            "neutral": 0,
            "negative": 0
          },
          "offset": 0,
          "length": 58,
          "text": "The restaurant had great food and our waiter was friendly.",
          "targets": [
            {
              "sentiment": "positive",
              "confidenceScores": {
                "positive": 1,
                "negative": 0
              },
              "offset": 25,
              "length": 4,
              "text": "food",
              "relations": [
                {
                  "relationType": "assessment",
                  "ref": "#/documents/0/sentences/0/assessments/0"
                }
              ]
            },
            {
              "sentiment": "positive",
              "confidenceScores": {
                "positive": 1,
                "negative": 0
              },
              "offset": 38,
              "length": 6,
              "text": "waiter",
              "relations": [
                {
                  "relationType": "assessment",
                  "ref": "#/documents/0/sentences/0/assessments/1"
                }
              ]
            }

Sentiment analysis returns a sentiment label and confidence score for the entire document, and each sentence

within it. Scores closer to 1 indicate a higher confidence in the label's classification, while lower scores indicate

lower confidence. A document can have multiple sentences, and the confidence scores within each document or

sentence add up to 1.

Opinion Mining will locate targets (nouns or verbs) in the text, and their associated assessment (adjective). In the

below response, the sentence The restaurant had great food and our waiter was friendly has two targets: food

and waiter. Each target's relations  property contains a ref  value with the URI-reference to the associated 

documents , sentences , and assessments  objects.

The API returns opinions as a target (noun or verb) and an assessment (adjective).



            }
          ],
          "assessments": [
            {
              "sentiment": "positive",
              "confidenceScores": {
                "positive": 1,
                "negative": 0
              },
              "offset": 19,
              "length": 5,
              "text": "great",
              "isNegated": false
            },
            {
              "sentiment": "positive",
              "confidenceScores": {
                "positive": 1,
                "negative": 0
              },
              "offset": 49,
              "length": 8,
              "text": "friendly",
              "isNegated": false
            }
          ]
        }
      ],
      "warnings": []
    }
  ],
  "errors": [],
  "modelVersion": "2020-04-01"
}

 Summary

 See also

In this article, you learned concepts and workflow for sentiment analysis using the Text Analytics API. In

summary:

Sentiment Analysis and Opinion Mining is available for select languages.

JSON documents in the request body include an ID, text, and language code.

The POST request is to a /sentiment  endpoint by using a personalized access key and an endpoint that's

valid for your subscription.

Use opinionMining=true  in Sentiment Analysis requests to get Opinion Mining results.

Response output, which consists of a sentiment score for each document ID, can be streamed to any app that

accepts JSON. For example, Excel and Power BI.

Text Analytics overview

Using the Text Analytics client library

What's new

Model versions

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account


   

 

Example: How to extract key phrases using Text
Analytics

 7/8/2021 • 4 minutes to read • Edit Online

TIPTIP

 Preparation

  Example synchronous request objectExample synchronous request object

The Key Phrase Extraction API evaluates unstructured text, and for each JSON document, returns a list of key

phrases.

This capability is useful if you need to quickly identify the main points in a collection of documents. For example,

given input text "The food was delicious and there were wonderful staff", the service returns the main talking

points: "food" and "wonderful staff".

For more information, see Supported languages.

Text Analytics also provides a Linux-based Docker container image for key phrase extraction, so you can install and run

the Text Analytics container close to your data.

You can also use this feature asynchronously using the /analyze  endpoint.

Key phrase extraction works best when you give it bigger amounts of text to work on. This is opposite from

sentiment analysis, which performs better on smaller amounts of text. To get the best results from both

operations, consider restructuring the inputs accordingly.

You must have JSON documents in this format: ID, text, language

Document size must be 5,120 or fewer characters per document, and you can have up to 1,000 items (IDs) per

collection. The collection is submitted in the body of the request. The following example is an illustration of

content you might submit for key phrase extraction.

See How to call the Text Analytics API for more information on request and response objects.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-keyword-extraction.md
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases


    {
        "documents": [
            {
                "language": "en",
                "id": "1",
                "text": "We love this trail and make the trip every year. The views are breathtaking and 
well worth the hike!"
            },
            {
                "language": "en",
                "id": "2",
                "text": "Poorly marked trails! I thought we were goners. Worst hike ever."
            },
            {
                "language": "en",
                "id": "3",
                "text": "Everyone in my family liked the trail but thought it was too challenging for the 
less athletic among us. Not necessarily recommended for small children."
            },
            {
                "language": "en",
                "id": "4",
                "text": "It was foggy so we missed the spectacular views, but the trail was ok. Worth 
checking out if you are in the area."
            },
            {
                "language": "en",
                "id": "5",
                "text": "This is my favorite trail. It has beautiful views and many places to stop and rest"
            }
        ]
    }

  Example asynchronous request objectExample asynchronous request object

{
"displayName":"MyJob",
"analysisInput":{
"documents":[
{
"id":"doc1",
"text":"It's incredibly sunny outside! I'm so happy"
},
{
"id":"doc2",
"text":"Pike place market is my favorite Seattle attraction."
}
]
},
    "tasks": {
        "keyPhraseExtractionTasks": [{
            "parameters": {
                "model-version": "latest"
            }
        }],
    }
}

 Step 1: Structure the request

Starting in v3.1 , You can send NER requests asynchronously using the /analyze  endpoint.

For information about request definition, see How to call the Text Analytics API. The following points are restated

for convenience:



TIPTIP

 Step 2: Post the request

 Step 3: View results

  Synchronous resultSynchronous result

Create a POSTPOST request. Review the API documentation for this request: Key Phrases API.

Set the HTTP endpoint for key phrase extraction by using either a Text Analytics resource on Azure or an

instantiated Text Analytics container. if you're using the API synchronously, you must include 

/text/analytics/v3.1/keyPhrases  in the URL. For example: 

https://<your-custom-subdomain>.api.cognitiveservices.azure.com/text/analytics/v3.1/keyPhrases .

Set a request header to include the access key for Text Analytics operations.

In the request body, provide the JSON documents collection you prepared for this analysis.

Use Postman or open the API testing consoleAPI testing console in the documentation to structure a request and POST it to the service.

Analysis is performed upon receipt of the request. For information about the size and number of requests you

can send per minute or per second, see the data limits article.

Recall that the service is stateless. No data is stored in your account. Results are returned immediately in the

response.

All POST requests return a JSON formatted response with the IDs and detected properties. The order of the

returned key phrases is determined internally, by the model.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the

output to a file on the local system, and then import it into an application that allows you to sort, search, and

manipulate the data.

An example of the output for key phrase extraction from the v3.1 endpoint is shown here:

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases


{
    "documents": [
        {
            "id": "1",
            "keyPhrases": [
                "trail",
                "trip",
                "views",
                "hike"
            ],
            "warnings": []
        },
        {
            "id": "2",
            "keyPhrases": [
                "Worst hike",
                "trails"
            ],
            "warnings": []
        },
        {
            "id": "3",
            "keyPhrases": [
                "less athletic",
                "small children",
                "Everyone",
                "family",
                "trail"
            ],
            "warnings": []
        },
        {
            "id": "4",
            "keyPhrases": [
                "spectacular views",
                "trail",
                "area"
            ],
            "warnings": []
        },
        {
            "id": "5",
            "keyPhrases": [
                "favorite trail",
                "beautiful views",
                "many places"
            ],
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-06-01"
}

  Asynchronous resultAsynchronous result

As noted, the analyzer finds and discards non-essential words, and it keeps single terms or phrases that appear

to be the subject or object of a sentence.

If you use the /analyze  endpoint for asynchronous operation, you will get a response containing the tasks you

sent to the API.



{
    "jobId": "fa813c9a-0d96-4a34-8e4f-a2a6824f9190",
    "lastUpdateDateTime": "2021-07-07T18:16:45Z",
    "createdDateTime": "2021-07-07T18:16:15Z",
    "expirationDateTime": "2021-07-08T18:16:15Z",
    "status": "succeeded",
    "errors": [],
    "displayName": "MyJob",
    "tasks": {
        "completed": 1,
        "failed": 0,
        "inProgress": 0,
        "total": 1,
        "keyPhraseExtractionTasks": [
            {
                "lastUpdateDateTime": "2021-07-07T18:16:45.0623454Z",
                "taskName": "KeyPhraseExtraction_latest",
                "state": "succeeded",
                "results": {
                    "documents": [
                        {
                            "id": "doc1",
                            "keyPhrases": [],
                            "warnings": []
                        },
                        {
                            "id": "doc2",
                            "keyPhrases": [
                                "Pike place market",
                                "Seattle attraction",
                                "favorite"
                            ],
                            "warnings": []
                        }
                    ],
                    "errors": [],
                    "modelVersion": "2021-06-01"
                }
            }
        ]
    }
}

 Summary

 See also

 

In this article, you learned concepts and workflow for key phrase extraction by using Text Analytics in Cognitive

Services. In summary:

Key phrase extraction API is available for selected languages.

JSON documents in the request body include an ID, text, and language code.

POST request is to a /keyphrases  or /analyze  endpoint, using a personalized access key and an endpoint

that is valid for your subscription.

Response output, which consists of key words and phrases for each document ID, can be streamed to any

app that accepts JSON, including Microsoft Office Excel and Power BI, to name a few.

Text Analytics overview Frequently asked questions (FAQ)

Text Analytics product page

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/text-analytics-resource-faq.html#body
https://go.microsoft.com/fwlink/?linkid=759712


Next steps
Text Analytics overview

Using the Text Analytics client library

What's new

Model versions



   

 

How to use Named Entity Recognition in Text
Analytics

 7/8/2021 • 8 minutes to read • Edit Online

 Entity Linking

 Named Entity Recognition (NER)

 Personally Identifiable Information (PII)

 Named Entity Recognition features and versions

F EAT UREF EAT URE N ER V3. 0N ER V3. 0 N ER V3. 1N ER V3. 1

Methods for single, and batch
requests

X X

Expanded entity recognition across
several categories

X X

Separate endpoints for sending entity
linking and NER requests.

X X

Recognition of personal ( PII ) and

health ( PHI ) information entities

X

Redaction of PII X

The Text Analytics API lets you takes unstructured text and returns a list of disambiguated entities, with links to

more information on the web. The API supports both named entity recognition (NER) for several entity

categories, and entity linking.

Entity linking is the ability to identify and disambiguate the identity of an entity found in text (for example,

determining whether an occurrence of the word "Mars" refers to the planet, or to the Roman god of war). This

process requires the presence of a knowledge base in an appropriate language, to link recognized entities in

text. Entity Linking uses Wikipedia as this knowledge base.

Named Entity Recognition (NER) is the ability to identify different entities in text and categorize them into pre-

defined classes or types such as: person, location, event, product, and organization.

The PII feature is part of NER and it can identify and redact sensitive entities in text that are associated with an

individual person such as: phone number, email address, mailing address, passport number.

See language support for information.

Named Entity Recognition v3 provides expanded detection across multiple types. Currently, NER v3.0 can

recognize entities in the general entity category.

Named Entity Recognition v3.1 includes the detection capabilities of v3.0, and:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-entity-linking.md
https://www.wikipedia.org/


 Sending a REST API request
  PreparationPreparation

  Structure the requestStructure the request

NOTENOTE

  Request endpointsRequest endpoints
 

 

The ability to detect personal information ( PII ) using the v3.1/entities/recognition/pii  endpoint.

An optional domain=phi  parameter to detect confidential health information ( PHI ).

Asynchronous operation using the /analyze  endpoint.

For more information, see the entity categories article, and request endpoints section below. For more

information on confidence scores, see the Text Analytics transparency note.

You must have JSON documents in this format: ID, text, language.

Each document must be under 5,120 characters, and you can have up to 1,000 items (IDs) per collection. The

collection is submitted in the body of the request.

Create a POST request. You can use Postman or the API testing consoleAPI testing console in the following links to quickly

structure and send one.

You can find your key and endpoint for your Text Analytics resource on the azure portal. They will be located on the

resource's Quick star tQuick star t  page, under resource managementresource management .

Version 3.1

Version 3.0

Named Entity Recognition v3.1  uses separate endpoints for NER, PII, and entity linking requests. Use a URL

format below based on your request.

Entity linkingEntity linking

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/linking

Named Entity Recognition version 3.1 reference for Linking

Named Entity RecognitionNamed Entity Recognition

General entities - 
https://<your-custom-
subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/general

Named Entity Recognition version 3.1 reference for General

Personally Identifiable Information (PII)Personally Identifiable Information (PII)

Personal ( PII ) information - 

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/pii

You can also use the optional domain=phi  parameter to detect health ( PHI ) information in text.

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/pii?
domain=phi

Starting in v3.1 , The JSON response includes a redactedText  property, which contains the modified input text

where the detected PII entities are replaced by an *  for each character in the entities.

https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note?context=/azure/cognitive-services/text-analytics/context/context
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/EntitiesLinking
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/EntitiesRecognitionGeneral


TIPTIP

 Example requests
 

 

  Example synchronous NER requestExample synchronous NER request

{
  "documents": [
    {
        "id": "1",
        "language": "en",
        "text": "Our tour guide took us up the Space Needle during our trip to Seattle last week."
    }
  ]
}

  Example synchronous PII requestExample synchronous PII request

Named Entity Recognition version 3.1 reference for PII

The API will attempt to detect the listed entity categories for a given document language. If you want to specify

which entities will be detected and returned, use the optional piiCategories  parameter with the appropriate

entity categories. This parameter can also let you detect entities that aren't enabled by default for your

document language. The following example would detect a French driver's license number that might occur in

English text, along with the default English entities.

If you don't include default  when specifying entity categories, The API will only return the entity categories you specify.

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/pii?
piiCategories=default,FRDriversLicenseNumber

Asynchronous operationAsynchronous operation

Starting in v3.1 , You can send NER and entity linking requests asynchronously using the /analyze  endpoint.

Asynchronous operation - 

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/analyze

See How to call the Text Analytics API for information on sending asynchronous requests.

Set a request header to include your Text Analytics API key. In the request body, provide the JSON documents

you prepared.

Version 3.1

Version 3.0

The following JSON is an example of content you might send to the API. The request format is the same for both

versions of the API.

The following JSON is an example of content you might send to the API to detect PII in text.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/EntitiesRecognitionPii


{
  "documents": [
    {
        "id": "1",
        "language": "en",
        "text": "You can even pre-order from their online menu at www.contososteakhouse.com, call 312-555-
0176 or send email to order@contososteakhouse.com!"
    }
  ]
}

  Example asynchronous NER requestExample asynchronous NER request

{
"displayName":"MyJob",
"analysisInput":{
"documents":[
{
"id":"doc1",
"text":"It's incredibly sunny outside! I'm so happy"
},
{
"id":"doc2",
"text":"Pike place market is my favorite Seattle attraction."
}
]
},
    "tasks": {
        "entityRecognitionTasks": [
            {
                "parameters": {
                    "model-version": "latest"
                }
            }
        ],
        "entityRecognitionPiiTasks": [{
            "parameters": {
                "model-version": "latest"
            }
        }]
    }
}

 Post the request

 View results

If you use the /analyze  endpoint for asynchronous operation, you will get a response containing the tasks you

sent to the API.

Analysis is performed upon receipt of the request. See the data limits article for information on the size and

number of requests you can send per minute and second.

The Text Analytics API is stateless. No data is stored in your account, and results are returned immediately in the

response.

All POST requests return a JSON formatted response with the IDs and detected entity properties.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the

output to a file on the local system, and then import it into an application that allows you to sort, search, and

manipulate the data. Due to multilingual and emoji support, the response may contain text offsets. For more



  Example responsesExample responses

 

 

  Synchronous example resultsSynchronous example results

{
    "documents": [
        {
            "id": "1",
            "entities": [
                {
                    "text": "tour guide",
                    "category": "PersonType",
                    "offset": 4,
                    "length": 10,
                    "confidenceScore": 0.94
                },
                {
                    "text": "Space Needle",
                    "category": "Location",
                    "offset": 30,
                    "length": 12,
                    "confidenceScore": 0.96
                },
                {
                    "text": "Seattle",
                    "category": "Location",
                    "subcategory": "GPE",
                    "offset": 62,
                    "length": 7,
                    "confidenceScore": 1.0
                },
                {
                    "text": "last week",
                    "category": "DateTime",
                    "subcategory": "DateRange",
                    "offset": 70,
                    "length": 9,
                    "confidenceScore": 0.8
                }
            ],
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-06-01"
}

information, see how to process text offsets.

Version 3 provides separate endpoints for general NER, PII, and entity linking. Version 3.1-pareview includes an

asynchronous Analyze mode. The responses for these operations are below.

Version 3.1

Version 3.0

Example of a general NER response:

Example of a PII response:



{
    "documents": [
        {
            "redactedText": "You can even pre-order from their online menu at www.contososteakhouse.com, 
call ************ or send email to ***************************!",
            "id": "1",
            "entities": [
                {
                    "text": "312-555-0176",
                    "category": "PhoneNumber",
                    "offset": 81,
                    "length": 12,
                    "confidenceScore": 0.8
                },
                {
                    "text": "order@contososteakhouse.com",
                    "category": "Email",
                    "offset": 111,
                    "length": 27,
                    "confidenceScore": 0.8
                },
                {
                    "text": "contososteakhouse",
                    "category": "Organization",
                    "offset": 117,
                    "length": 17,
                    "confidenceScore": 0.45
                }
            ],
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-01-15"
}

Example of an Entity linking response:



{
    "documents": [
        {
            "id": "1",
            "entities": [
                {
                    "bingId": "f8dd5b08-206d-2554-6e4a-893f51f4de7e",
                    "name": "Space Needle",
                    "matches": [
                        {
                            "text": "Space Needle",
                            "offset": 30,
                            "length": 12,
                            "confidenceScore": 0.4
                        }
                    ],
                    "language": "en",
                    "id": "Space Needle",
                    "url": "https://en.wikipedia.org/wiki/Space_Needle",
                    "dataSource": "Wikipedia"
                },
                {
                    "bingId": "5fbba6b8-85e1-4d41-9444-d9055436e473",
                    "name": "Seattle",
                    "matches": [
                        {
                            "text": "Seattle",
                            "offset": 62,
                            "length": 7,
                            "confidenceScore": 0.25
                        }
                    ],
                    "language": "en",
                    "id": "Seattle",
                    "url": "https://en.wikipedia.org/wiki/Seattle",
                    "dataSource": "Wikipedia"
                }
            ],
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-06-01"
}

  Example asynchronous resultExample asynchronous result

{
    "jobId": "f480e1f9-0b61-4d47-93da-240f084582cf",
    "lastUpdateDateTime": "2021-07-06T19:03:15Z",
    "createdDateTime": "2021-07-06T19:02:47Z",
    "expirationDateTime": "2021-07-07T19:02:47Z",
    "status": "succeeded",
    "errors": [],
    "displayName": "MyJob",
    "tasks": {
        "completed": 2,
        "failed": 0,
        "inProgress": 0,
        "total": 2,
        "entityRecognitionTasks": [
            {
                "lastUpdateDateTime": "2021-07-06T19:03:15.212633Z",
                "taskName": "NamedEntityRecognition_latest",
                "state": "succeeded",
                "results": {
                    "documents": [



                    "documents": [
                        {
                            "id": "doc1",
                            "entities": [],
                            "warnings": []
                        },
                        {
                            "id": "doc2",
                            "entities": [
                                {
                                    "text": "Pike place market",
                                    "category": "Location",
                                    "offset": 0,
                                    "length": 17,
                                    "confidenceScore": 0.95
                                },
                                {
                                    "text": "Seattle",
                                    "category": "Location",
                                    "subcategory": "GPE",
                                    "offset": 33,
                                    "length": 7,
                                    "confidenceScore": 0.99
                                }
                            ],
                            "warnings": []
                        }
                    ],
                    "errors": [],
                    "modelVersion": "2021-06-01"
                }
            }
        ],
        "entityRecognitionPiiTasks": [
            {
                "lastUpdateDateTime": "2021-07-06T19:03:03.2063832Z",
                "taskName": "PersonallyIdentifiableInformation_latest",
                "state": "succeeded",
                "results": {
                    "documents": [
                        {
                            "redactedText": "It's incredibly sunny outside! I'm so happy",
                            "id": "doc1",
                            "entities": [],
                            "warnings": []
                        },
                        {
                            "redactedText": "Pike place market is my favorite Seattle attraction.",
                            "id": "doc2",
                            "entities": [],
                            "warnings": []
                        }
                    ],
                    "errors": [],
                    "modelVersion": "2021-01-15"
                }
            }
        ]
    }
}

 Summary
In this article, you learned concepts and workflow for entity linking using Text Analytics in Cognitive Services. In

summary:



 Next steps

JSON documents in the request body include an ID, text, and language code.

POST requests are sent to one or more endpoints, using a personalized access key and an endpoint that is

valid for your subscription.

Response output, which consists of linked entities (including confidence scores, offsets, and web links, for

each document ID) can be used in any application

Text Analytics overview

Using the Text Analytics client library

Model versions

What's new

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account


   

 

How to: Use Text Analytics for health
 7/8/2021 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

 Features

 

 

Text Analytics for health is a capability provided “AS IS” and “WITH ALL FAULTS.” Text Analytics for health is not intended or

made available for use as a medical device, clinical support, diagnostic tool, or other technology intended to be used in

the diagnosis, cure, mitigation, treatment, or prevention of disease or other conditions, and no license or right is granted

by Microsoft to use this capability for such purposes. This capability is not designed or intended to be implemented or

deployed as a substitute for professional medical advice or healthcare opinion, diagnosis, treatment, or the clinical

judgment of a healthcare professional, and should not be used as such. The customer is solely responsible for any use of

Text Analytics for health. The customer must separately license any and all source vocabularies it intends to use under the

terms set for that UMLS Metathesaurus License Agreement Appendix or any future equivalent link. The customer is

responsible for ensuring compliance with those license terms, including any geographic or other applicable restrictions.

Text Analytics for health is a feature of the Text Analytics API service that extracts and labels relevant medical

information from unstructured texts such as doctor's notes, discharge summaries, clinical documents, and

electronic health records. There are two ways to utilize this service:

The web-based API (asynchronous)

A Docker container (synchronous)

Text Analytics for health performs Named Entity Recognition (NER), relation extraction, entity negation and entity

linking on English-language text to uncover insights in unstructured clinical and biomedical text.

Named Entity Recognition

Relation Extraction

Entity Linking

Assertion Detection

Named Entity Recognition detects words and phrases mentioned in unstructured text that can be associated

with one or more semantic types, such as diagnosis, medication name, symptom/sign, or age.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-for-health.md
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/license_agreement_appendix.html
https://channel9.msdn.com/Shows/AI-Show/Introducing-Text-Analytics-for-Health/player?nocookie=true


  Supported languagesSupported languages

 Using the Docker container

 Using the client library

 Sending a REST API request
  PreparationPreparation

  Structure the API request for the hosted asynchronous web APIStructure the API request for the hosted asynchronous web API

example.json

{
  "documents": [
    {
      "language": "en",
      "id": "1",
      "text": "Subject was administered 100mg remdesivir intravenously over a period of 120 min"
    }
  ]
}

  Hosted asynchronous web API responseHosted asynchronous web API response

See the entity categories returned by Text Analytics for health for a full list of supported entities. For information

on confidence scores, see the Text Analytics transparency note.

Text Analytics for health only supports English language documents.

To run the Text Analytics for health container in your own environment, follow these instructions to download

and install the container.

The latest prerelease of the Text Analytics client library enables you to call Text Analytics for health using a client

object. Refer to the reference documentation, and see the examples on GitHub:

C#

Python

Java

You must have JSON documents in this format: ID, text, and language.

Document size must be under 5,120 characters per document. For the maximum number of documents

permitted in a collection, see the data limits article under Concepts. The collection is submitted in the body of

the request. If your text exceeds this limit, consider splitting the text into separate requests. For best results, split

text between sentences.

For both the container and hosted web API, you must create a POST request. You can use Postman, a cURL

command or the API testing consoleAPI testing console in the Text Analytics for health hosted API reference to quickly construct

and send a POST request to the hosted web API in your desired region. In the API v3.1 endpoint, the 

loggingOptOut  boolean query parameter can be used to enable logging for troubleshooting purposes. It's

default is TRUE if not specified in the request query.

Send the POST request to 

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/health/jobs  Below is

an example of a JSON file attached to the Text Analytics for health API request's POST body:

Since this POST request is used to submit a job for the asynchronous operation, there is no text in the response

https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note#general-guidelines-to-understand-and-improve-performance?context=/azure/cognitive-services/text-analytics/context/context
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Health


{
    "jobId": "69081148-055b-4f92-977d-115df343de69",
    "lastUpdateDateTime": "2021-07-06T19:06:03Z",
    "createdDateTime": "2021-07-06T19:05:41Z",
    "expirationDateTime": "2021-07-07T19:05:41Z",
    "status": "succeeded",
    "errors": [],
    "results": {
        "documents": [
            {
                "id": "1",
                "entities": [
                    {
                        "offset": 25,
                        "length": 5,
                        "text": "100mg",
                        "category": "Dosage",
                        "confidenceScore": 1.0
                    },
                    {
                        "offset": 31,
                        "length": 10,
                        "text": "remdesivir",
                        "category": "MedicationName",
                        "confidenceScore": 1.0,
                        "name": "remdesivir",
                        "links": [
                            {
                                "dataSource": "UMLS",
                                "id": "C4726677"
                            },
                            {
                                "dataSource": "DRUGBANK",
                                "id": "DB14761"
                            },
                            {
                                "dataSource": "GS",
                                "id": "6192"
                            },
                            {
                                "dataSource": "MEDCIN",
                                "id": "398132"
                            },
                            {
                                "dataSource": "MMSL",
                                "id": "d09540"
                            },
                            {
                                "dataSource": "MSH",
                                "id": "C000606551"

object. However, you need the value of the operation-location KEY in the response headers to make a GET

request to check the status of the job and the output. Below is an example of the value of the operation-location

KEY in the response header of the POST request:

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/health/jobs/<jobID>

To check the job status, make a GET request to the URL in the value of the operation-location KEY header of the

POST response. The following states are used to reflect the status of a job: NotStarted , running , succeeded , 

failed , rejected , cancelling , and cancelled .

You can cancel a job with a NotStarted  or running  status with a DELETE HTTP call to the same URL as the GET

request. More information on the DELETE call is available in the Text Analytics for health hosted API reference.

The following is an example of the response of a GET request. The output is available for retrieval until the 

expirationDateTime  (24 hours from the time the job was created) has passed after which the output is purged.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/CancelHealthJob


                                "id": "C000606551"
                            },
                            {
                                "dataSource": "MTHSPL",
                                "id": "3QKI37EEHE"
                            },
                            {
                                "dataSource": "NCI",
                                "id": "C152185"
                            },
                            {
                                "dataSource": "NCI_FDA",
                                "id": "3QKI37EEHE"
                            },
                            {
                                "dataSource": "NDDF",
                                "id": "018308"
                            },
                            {
                                "dataSource": "RXNORM",
                                "id": "2284718"
                            },
                            {
                                "dataSource": "SNOMEDCT_US",
                                "id": "870592005"
                            },
                            {
                                "dataSource": "VANDF",
                                "id": "4039395"
                            }
                        ]
                    },
                    {
                        "offset": 42,
                        "length": 13,
                        "text": "intravenously",
                        "category": "MedicationRoute",
                        "confidenceScore": 0.99
                    },
                    {
                        "offset": 73,
                        "length": 7,
                        "text": "120 min",
                        "category": "Time",
                        "confidenceScore": 0.98
                    }
                ],
                "relations": [
                    {
                        "relationType": "DosageOfMedication",
                        "entities": [
                            {
                                "ref": "#/results/documents/0/entities/0",
                                "role": "Dosage"
                            },
                            {
                                "ref": "#/results/documents/0/entities/1",
                                "role": "Medication"
                            }
                        ]
                    },
                    {
                        "relationType": "RouteOfMedication",
                        "entities": [
                            {
                                "ref": "#/results/documents/0/entities/1",
                                "role": "Medication"
                            },
                            {
                                "ref": "#/results/documents/0/entities/2",



                                "ref": "#/results/documents/0/entities/2",
                                "role": "Route"
                            }
                        ]
                    },
                    {
                        "relationType": "TimeOfMedication",
                        "entities": [
                            {
                                "ref": "#/results/documents/0/entities/1",
                                "role": "Medication"
                            },
                            {
                                "ref": "#/results/documents/0/entities/3",
                                "role": "Time"
                            }
                        ]
                    }
                ],
                "warnings": []
            }
        ],
        "errors": [],
        "modelVersion": "2021-05-15"
    }
}

  Structure the API request for the containerStructure the API request for the container

curl -X POST 'http://<serverURL>:5000/text/analytics/v3.1/entities/health' --header 'Content-Type: 
application/json' --header 'accept: application/json' --data-binary @example.json

example.json

{
  "documents": [
    {
      "language": "en",
      "id": "1",
      "text": "Patient reported itchy sores after swimming in the lake."
    },
    {
      "language": "en",
      "id": "2",
      "text": "Prescribed 50mg benadryl, taken twice daily."
    }
  ]
}

  Container response bodyContainer response body

{

You can use Postman or the example cURL request below to submit a query to the container you deployed,

replacing the serverURL  variable with the appropriate value. Note the version of the API in the URL for the

container is different than the hosted API.

The following JSON is an example of a JSON file attached to the Text Analytics for health API request's POST

body:

The following JSON is an example of the Text Analytics for health API response body from the containerized

synchronous call:



    "documents": [
        {
            "id": "1",
            "entities": [
                {
                    "offset": 25,
                    "length": 5,
                    "text": "100mg",
                    "category": "Dosage",
                    "confidenceScore": 1.0
                },
                {
                    "offset": 31,
                    "length": 10,
                    "text": "remdesivir",
                    "category": "MedicationName",
                    "confidenceScore": 1.0,
                    "name": "remdesivir",
                    "links": [
                        {
                            "dataSource": "UMLS",
                            "id": "C4726677"
                        },
                        {
                            "dataSource": "DRUGBANK",
                            "id": "DB14761"
                        },
                        {
                            "dataSource": "GS",
                            "id": "6192"
                        },
                        {
                            "dataSource": "MEDCIN",
                            "id": "398132"
                        },
                        {
                            "dataSource": "MMSL",
                            "id": "d09540"
                        },
                        {
                            "dataSource": "MSH",
                            "id": "C000606551"
                        },
                        {
                            "dataSource": "MTHSPL",
                            "id": "3QKI37EEHE"
                        },
                        {
                            "dataSource": "NCI",
                            "id": "C152185"
                        },
                        {
                            "dataSource": "NCI_FDA",
                            "id": "3QKI37EEHE"
                        },
                        {
                            "dataSource": "NDDF",
                            "id": "018308"
                        },
                        {
                            "dataSource": "RXNORM",
                            "id": "2284718"
                        },
                        {
                            "dataSource": "SNOMEDCT_US",
                            "id": "870592005"
                        },
                        {
                            "dataSource": "VANDF",



                            "id": "4039395"
                        }
                    ]
                },
                {
                    "offset": 42,
                    "length": 13,
                    "text": "intravenously",
                    "category": "MedicationRoute",
                    "confidenceScore": 1.0
                },
                {
                    "offset": 73,
                    "length": 7,
                    "text": "120 min",
                    "category": "Time",
                    "confidenceScore": 0.94
                }
            ],
            "relations": [
                {
                    "relationType": "DosageOfMedication",
                    "entities": [
                        {
                            "ref": "#/documents/0/entities/0",
                            "role": "Dosage"
                        },
                        {
                            "ref": "#/documents/0/entities/1",
                            "role": "Medication"
                        }
                    ]
                },
                {
                    "relationType": "RouteOfMedication",
                    "entities": [
                        {
                            "ref": "#/documents/0/entities/1",
                            "role": "Medication"
                        },
                        {
                            "ref": "#/documents/0/entities/2",
                            "role": "Route"
                        }
                    ]
                },
                {
                    "relationType": "TimeOfMedication",
                    "entities": [
                        {
                            "ref": "#/documents/0/entities/1",
                            "role": "Medication"
                        },
                        {
                            "ref": "#/documents/0/entities/3",
                            "role": "Time"
                        }
                    ]
                }
            ],
            "warnings": []
        }
    ],
    "errors": [],
    "modelVersion": "2021-03-01"
}

  



Assertion outputAssertion output

{
                        "offset": 381,
                        "length": 3,
                        "text": "SOB",
                        "category": "SymptomOrSign",
                        "confidenceScore": 0.98,
                        "assertion": {
                            "certainty": "negative"
                        },
                        "name": "Dyspnea",
                        "links": [
                            {
                                "dataSource": "UMLS",
                                "id": "C0013404"
                            },
                            {
                                "dataSource": "AOD",
                                "id": "0000005442"
                            },
    ...

  Relation extraction outputRelation extraction output

Text Analytics for health returns assertion modifiers, which are informative attributes assigned to medical

concepts that provide deeper understanding of the concepts’ context within the text. These modifiers are divided

into three categories, each focusing on a different aspect, and containing a set of mutually exclusive values. Only

one value per category is assigned to each entity. The most common value for each category is the Default

value. The service’s output response contains only assertion modifiers that are different from the default value.

CERTAINTYCERTAINTY – provides information regarding the presence (present vs. absent) of the concept and how certain

the text is regarding its presence (definite vs. possible).

PositivePositive [Default]: the concept exists or happened.

NegativeNegative: the concept does not exist now or never happened.

Positive_PossiblePositive_Possible: the concept likely exists but there is some uncertainty.

Negative_PossibleNegative_Possible: the concept’s existence is unlikely but there is some uncertainty.

Neutral_PossibleNeutral_Possible: the concept may or may not exist without a tendency to either side.

CONDITIONALITYCONDITIONALITY  – provides information regarding whether the existence of a concept depends on certain

conditions.

NoneNone [Default]: the concept is a fact and not hypothetical and does not depend on certain conditions.

HypotheticalHypothetical : the concept may develop or occur in the future.

ConditionalConditional : the concept exists or occurs only under certain conditions.

ASSOCIATIONASSOCIATION – describes whether the concept is associated with the subject of the text or someone else.

SubjectSubject [Default]: the concept is associated with the subject of the text, usually the patient.

Someone_ElseSomeone_Else: the concept is associated with someone who is not the subject of the text.

Assertion detection represents negated entities as a negative value for the certainty category, for example:

Text Analytics for Health recognizes relations between different concepts, including relations between attribute

and entity (for example, direction of body structure, dosage of medication) and between entities (for example,

abbreviation detection).

ABBREVIATIONABBREVIATION

BODY_SITE_OF_CONDITIONBODY_SITE_OF_CONDITION



BODY_SITE_OF_TREATMENTBODY_SITE_OF_TREATMENT

COURSE_OF_CONDITIONCOURSE_OF_CONDITION

COURSE_OF_EXAMINATIONCOURSE_OF_EXAMINATION

COURSE_OF_MEDICATIONCOURSE_OF_MEDICATION

COURSE_OF_TREATMENTCOURSE_OF_TREATMENT

DIRECTION_OF_BODY_STRUCTUREDIRECTION_OF_BODY_STRUCTURE

DIRECTION_OF_CONDITIONDIRECTION_OF_CONDITION

DIRECTION_OF_EXAMINATIONDIRECTION_OF_EXAMINATION

DIRECTION_OF_TREATMENTDIRECTION_OF_TREATMENT

DOSAGE_OF_MEDICATIONDOSAGE_OF_MEDICATION

EXAMINATION_FINDS_CONDITIONEXAMINATION_FINDS_CONDITION

EXPRESSION_OF_GENEEXPRESSION_OF_GENE

EXPRESSION_OF_VARIANTEXPRESSION_OF_VARIANT

FORM_OF_MEDICATIONFORM_OF_MEDICATION

FREQUENCY_OF_CONDITIONFREQUENCY_OF_CONDITION

FREQUENCY_OF_MEDICATIONFREQUENCY_OF_MEDICATION

FREQUENCY_OF_TREATMENTFREQUENCY_OF_TREATMENT

MUTATION_TYPE_OF_GENEMUTATION_TYPE_OF_GENE

MUTATION_TYPE_OF_VARIANTMUTATION_TYPE_OF_VARIANT

QUALIFIER_OF_CONDITIONQUALIFIER_OF_CONDITION

REL ATION_OF_EXAMINATIONREL ATION_OF_EXAMINATION

ROUTE_OF_MEDICATIONROUTE_OF_MEDICATION

SCALE_OF_CONDITIONSCALE_OF_CONDITION

TIME_OF_CONDITIONTIME_OF_CONDITION

TIME_OF_EVENTTIME_OF_EVENT

TIME_OF_EXAMINATIONTIME_OF_EXAMINATION

TIME_OF_MEDICATIONTIME_OF_MEDICATION

TIME_OF_TREATMENTTIME_OF_TREATMENT

UNIT_OF_CONDITIONUNIT_OF_CONDITION

UNIT_OF_EXAMINATIONUNIT_OF_EXAMINATION

VALUE_OF_CONDITIONVALUE_OF_CONDITION

VALUE_OF_EXAMINATIONVALUE_OF_EXAMINATION

VARIANT_OF_GENEVARIANT_OF_GENE



NOTENOTE

                "relations": [
                    {
                        "relationType": "DosageOfMedication",
                        "entities": [
                            {
                                "ref": "#/results/documents/0/entities/0",
                                "role": "Dosage"
                            },
                            {
                                "ref": "#/results/documents/0/entities/1",
                                "role": "Medication"
                            }
                        ]
                    },
                    {
                        "relationType": "RouteOfMedication",
                        "entities": [
                            {
                                "ref": "#/results/documents/0/entities/1",
                                "role": "Medication"
                            },
                            {
                                "ref": "#/results/documents/0/entities/2",
                                "role": "Route"
                            }
                        ]
...
]

 See also

Relations referring to CONDITION may refer to either the DIAGNOSIS entity type or the SYMPTOM_OR_SIGN entity

type.

Relations referring to MEDICATION may refer to either the MEDICATION_NAME entity type or the

MEDICATION_CLASS entity type.

Relations referring to TIME may refer to either the TIME entity type or the DATE entity type.

Relation extraction output contains URI references and assigned roles of the entities of the relation type. For

example:

Text Analytics overview

Named Entity categories

What's new



   

 

Install and run Text Analytics containers
 7/22/2021 • 18 minutes to read • Edit Online

NOTENOTE

 Prerequisites

 Gathering required parameters

  Endpoint URI Endpoint URI {ENDPOINT_URI}

Containers enable you to run the Text Analytic APIs in your own environment and are great for your specific

security and data governance requirements. The following Text Analytics containers are available:

sentiment analysis

language detection

key phrase extraction (preview)

Text Analytics for health

Entity linking and NER are not currently available as a container.

The container image locations may have recently changed. Read this article to see the updated location for this

container.

The free account is limited to 5,000 text records per month and only the FreeFree and StandardStandard pricing tiers are valid for

containers. For more information on transaction request rates, see Data Limits.

Containers enable you to run the Text Analytic APIs in your own environment and are great for your specific

security and data governance requirements. The Text Analytics containers provide advanced natural language

processing over raw text, and include three main functions: sentiment analysis, key phrase extraction, and

language detection.

If you don't have an Azure subscription, create a free account before you begin.

You must meet the following prerequisites before using Text Analytics containers. If you don't have an Azure

subscription, create a free account before you begin.

Docker installed on a host computer. Docker must be configured to allow the containers to connect with and

send billing data to Azure.

A Text Analytics resource with the free (F0) or standard (S) pricing tier.

On Windows, Docker must also be configured to support Linux containers.

You should have a basic understanding of Docker concepts.

There are three primary parameters for all Cognitive Services' containers that are required. The end-user license

agreement (EULA) must be present with a value of accept . Additionally, both an Endpoint URL and API Key are

needed.

The EndpointEndpoint URI value is available on the Azure portal Overview page of the corresponding Cognitive Service

resource. Navigate to the Overview page, hover over the Endpoint, and a Copy to clipboard  icon will appear.

Copy and use where needed.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-install-containers.md
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics
https://azure.microsoft.com/free/cognitive-services/
https://azure.microsoft.com/free/cognitive-services/
https://docs.docker.com/
https://docs.docker.com/get-started/overview/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/


  Keys Keys {API_KEY}

IMPORTANTIMPORTANT

 Host computer requirements and recommendations

M IN IM UM  H O STM IN IM UM  H O ST
SP EC SSP EC S

REC O M M EN DEDREC O M M EN DED
H O ST  SP EC SH O ST  SP EC S M IN IM UM  T P SM IN IM UM  T P S M A XIM UM  T P SM A XIM UM  T P S

LanguageLanguage
detectiondetection

1 core, 2GB memory 1 core, 4GB memory 15 30

This key is used to start the container, and is available on the Azure portal's Keys page of the corresponding

Cognitive Service resource. Navigate to the Keys page, and click on the Copy to clipboard  icon.

These subscription keys are used to access your Cognitive Service API. Do not share your keys. Store them securely, for

example, using Azure Key Vault. We also recommend regenerating these keys regularly. Only one key is necessary to

make an API call. When regenerating the first key, you can use the second key for continued access to the service.

The host is a x64-based computer that runs the Docker container. It can be a computer on your premises or a

Docker hosting service in Azure, such as:

Azure Kubernetes Service.

Azure Container Instances.

A Kubernetes cluster deployed to Azure Stack. For more information, see Deploy Kubernetes to Azure Stack.

The following table describes the minimum and recommended specifications for the available Text Analytics

containers. Each CPU core must be at least 2.6 gigahertz (GHz) or faster. The allowable Transactions Per Second

(TPS) are also listed.

https://docs.microsoft.com/en-us/azure/aks/index
https://docs.microsoft.com/en-us/azure/container-instances/index
https://kubernetes.io/
https://docs.microsoft.com/en-us/azure-stack/operator
https://docs.microsoft.com/en-us/azure-stack/user/azure-stack-solution-template-kubernetes-deploy


key phrasekey phrase
extractionextraction
(preview)(preview)

1 core, 2GB memory 1 core, 4GB memory 15 30

SentimentSentiment
AnalysisAnalysis

1 core, 2GB memory 4 cores, 8GB
memory

15 30

Text Analytics forText Analytics for
health - 1health - 1
document/requestdocument/request

4 core, 10GB
memory

6 core, 12GB
memory

15 30

Text Analytics forText Analytics for
health - 10health - 10
documents/requesdocuments/reques
tt

6 core, 16GB
memory

8 core, 20GB
memory

15 30

M IN IM UM  H O STM IN IM UM  H O ST
SP EC SSP EC S

REC O M M EN DEDREC O M M EN DED
H O ST  SP EC SH O ST  SP EC S M IN IM UM  T P SM IN IM UM  T P S M A XIM UM  T P SM A XIM UM  T P S

 Get the container image with docker pull

 

 
  Docker pull for the Sentiment Analysis v3 containerDocker pull for the Sentiment Analysis v3 container

docker pull mcr.microsoft.com/azure-cognitive-services/textanalytics/sentiment:3.0-en

T EXT  A N A LY T IC S C O N TA IN ERT EXT  A N A LY T IC S C O N TA IN ER L A N GUA GE C O DEL A N GUA GE C O DE

Chinese-Simplified zh-hans

Chinese-Traditional zh-hant

Dutch nl

English en

French fr

German de

Hindi hi

CPU core and memory correspond to the --cpus  and --memory  settings, which are used as part of the 

docker run  command.

Sentiment Analysis

Key Phrase Extraction (preview)

Language Detection

Text Analytics for health

The sentiment analysis container v3 container is available in several languages. To download the container for

the English container, use the command below.

To download the container for another language, replace en  with one of the language codes below.



Italian it

Japanese ja

Korean ko

Norwegian (Bokmål) no

Portuguese (Brazil) pt-BR

Portuguese (Portugal) pt-PT

Spanish es

Turkish tr

T EXT  A N A LY T IC S C O N TA IN ERT EXT  A N A LY T IC S C O N TA IN ER L A N GUA GE C O DEL A N GUA GE C O DE

TIPTIP

docker images --format "table {{.ID}}\t{{.Repository}}\t{{.Tag}}"

IMAGE ID         REPOSITORY                TAG
<image-id>       <repository-path/name>    <tag-name>

 Run the container with docker run

IMPORTANTIMPORTANT

 

 

For a full description of available tags for the Text Analytics containers, see Docker Hub.

You can use the docker images command to list your downloaded container images. For example, the following command

lists the ID, repository, and tag of each downloaded container image, formatted as a table:

Once the container is on the host computer, use the docker run command to run the containers. The container

will continue to run until you stop it.

The docker commands in the following sections use the back slash, \ , as a line continuation character. Replace or

remove this based on your host operating system's requirements.

The Eula , Billing , and ApiKey  options must be specified to run the container; otherwise, the container won't

start. For more information, see Billing.

The sentiment analysis and language detection containers use v3 of the API, and are generally available. The key

phrase extraction container uses v2 of the API, and is in preview.

If you're using the Text Analytics for health container, the responsible AI (RAI) acknowledgment must also be

present with a value of accept .

Sentiment Analysis

Key Phrase Extraction (preview)

Language Detection

Text Analytics for health

https://go.microsoft.com/fwlink/?linkid=2018654
https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note-health


P L A C EH O L DERP L A C EH O L DER VA L UEVA L UE F O RM AT  O R EXA M P L EF O RM AT  O R EXA M P L E

{API_KEY}{API_KEY} The key for your Text Analytics
resource. You can find it on your
resource's Key and endpointKey and endpoint  page,
on the Azure portal.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

{ENDPOINT_URI}{ENDPOINT_URI} The endpoint for accessing the Text
Analytics API. You can find it on your
resource's Key and endpointKey and endpoint  page,
on the Azure portal.

https://<your-custom-
subdomain>.cognitiveservices.azure.com

docker run --rm -it -p 5000:5000 --memory 8g --cpus 1 \
mcr.microsoft.com/azure-cognitive-services/textanalytics/sentiment \
Eula=accept \
Billing={ENDPOINT_URI} \
ApiKey={API_KEY}

  Run multiple containers on the same hostRun multiple containers on the same host

 Query the container's prediction endpoint

 Validate that a container is running

REQ UEST  URLREQ UEST  URL P URP O SEP URP O SE

http://localhost:5000/ The container provides a home page.

To run the Sentiment Analysis v3 container, execute the following docker run  command. Replace the

placeholders below with your own values:

This command:

Runs a Sentiment Analysis container from the container image

Allocates one CPU core and 8 gigabytes (GB) of memory

Exposes TCP port 5000 and allocates a pseudo-TTY for the container

Automatically removes the container after it exits. The container image is still available on the host computer.

If you intend to run multiple containers with exposed ports, make sure to run each container with a different

exposed port. For example, run the first container on port 5000 and the second container on port 5001.

You can have this container and a different Azure Cognitive Services container running on the HOST together.

You also can have multiple containers of the same Cognitive Services container running.

The container provides REST-based query prediction endpoint APIs.

Use the host, http://localhost:5000 , for container APIs.

There are several ways to validate that the container is running. Locate the External IP address and exposed port

of the container in question, and open your favorite web browser. Use the various request URLs below to

validate the container is running. The example request URLs listed below are http://localhost:5000 , but your

specific container may vary. Keep in mind that you're to rely on your container's External IP address and exposed

port.



http://localhost:5000/ready Requested with GET, this provides a verification that the
container is ready to accept a query against the model. This
request can be used for Kubernetes liveness and readiness
probes.

http://localhost:5000/status Also requested with GET, this verifies if the api-key used to
start the container is valid without causing an endpoint
query. This request can be used for Kubernetes liveness and
readiness probes.

http://localhost:5000/swagger The container provides a full set of documentation for the
endpoints and a Tr y it outTr y it out  feature. With this feature, you
can enter your settings into a web-based HTML form and
make the query without having to write any code. After the
query returns, an example CURL command is provided to
demonstrate the HTTP headers and body format that's
required.

REQ UEST  URLREQ UEST  URL P URP O SEP URP O SE

 Stop the container

 Troubleshooting

TIPTIP

 Billing

To shut down the container, in the command-line environment where the container is running, select Ctrl+C.

If you run the container with an output mount and logging enabled, the container generates log files that are

helpful to troubleshoot issues that happen while starting or running the container.

For more troubleshooting information and guidance, see Cognitive Services containers frequently asked questions (FAQ).

The Text Analytics containers send billing information to Azure, using a Text Analytics resource on your Azure

account.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-faq


  Connect to AzureConnect to Azure

  Billing argumentsBilling arguments

O P T IO NO P T IO N DESC RIP T IO NDESC RIP T IO N

ApiKey The API key of the Cognitive Services resource that's used to
track billing information.
The value of this option must be set to an API key for the
provisioned resource that's specified in Billing .

Billing The endpoint of the Cognitive Services resource that's used
to track billing information.
The value of this option must be set to the endpoint URI of
a provisioned Azure resource.

Eula Indicates that you accepted the license for the container.
The value of this option must be set to acceptaccept .

 Summary

Queries to the container are billed at the pricing tier of the Azure resource that's used for the ApiKey .

Azure Cognitive Services containers aren't licensed to run without being connected to the metering / billing

endpoint. You must enable the containers to communicate billing information with the billing endpoint at all

times. Cognitive Services containers don't send customer data, such as the image or text that's being analyzed,

to Microsoft.

The container needs the billing argument values to run. These values allow the container to connect to the

billing endpoint. The container reports usage about every 10 to 15 minutes. If the container doesn't connect to

Azure within the allowed time window, the container continues to run but doesn't serve queries until the billing

endpoint is restored. The connection is attempted 10 times at the same time interval of 10 to 15 minutes. If it

can't connect to the billing endpoint within the 10 tries, the container stops serving requests. See the Cognitive

Services container FAQ for an example of the information sent to Microsoft for billing.

The docker run  command will start the container when all three of the following options are provided with

valid values:

For more information about these options, see Configure containers.

In this article, you learned concepts and workflow for downloading, installing, and running Text Analytics

containers. In summary:

Text Analytics provides three Linux containers for Docker, encapsulating various capabilities:

Container images are downloaded from the Microsoft Container Registry (MCR).

Container images run in Docker.

You can use either the REST API or SDK to call operations in Text Analytics containers by specifying the host

URI of the container.

You must specify billing information when instantiating a container.

Sentiment Analysis

Key Phrase Extraction (preview)

Language Detection

Text Analytics for health

https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-faq
https://docs.docker.com/engine/reference/commandline/run/


IMPORTANTIMPORTANT

 Next steps

Cognitive Services containers are not licensed to run without being connected to Azure for metering. Customers need to

enable the containers to communicate billing information with the metering service at all times. Cognitive Services

containers do not send customer data (e.g. text that is being analyzed) to Microsoft.

See Configure containers for configuration settings.



   

 

Configure Text Analytics docker containers
 7/22/2021 • 6 minutes to read • Edit Online

 Configuration settings

REQ UIREDREQ UIRED SET T IN GSET T IN G P URP O SEP URP O SE

Yes ApiKey Tracks billing information.

No ApplicationInsights Enables adding Azure Application
Insights telemetry support to your
container.

Yes Billing Specifies the endpoint URI of the
service resource on Azure.

Yes Eula Indicates that you've accepted the
license for the container.

No Fluentd Writes log and, optionally, metric data
to a Fluentd server.

No HTTP Proxy Configures an HTTP proxy for making
outbound requests.

No Logging Provides ASP.NET Core logging
support for your container.

No Mounts Reads and writes data from the host
computer to the container and from
the container back to the host
computer.

IMPORTANTIMPORTANT

 ApiKey configuration setting

Text Analytics provides each container with a common configuration framework, so that you can easily

configure and manage storage, logging and telemetry, and security settings for your containers. Several

example docker run commands are also available.

The container has the following configuration settings:

The ApiKey , Billing , and Eula  settings are used together, and you must provide valid values for all three of them;

otherwise your container won't start. For more information about using these configuration settings to instantiate a

container, see Billing.

The ApiKey  setting specifies the Azure resource key used to track billing information for the container. You must

specify a value for the ApiKey and the value must be a valid key for the Text Analytics resource specified for the 

Billing  configuration setting.

This setting can be found in the following place:

Azure portal: Text AnalyticsText Analytics  resource management, under KeysKeys

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/text-analytics-resource-container-config.md
https://docs.microsoft.com/en-us/azure/application-insights


 ApplicationInsights setting

REQ UIREDREQ UIRED N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

No InstrumentationKey String The instrumentation key of
the Application Insights
instance to which telemetry
data for the container is
sent. For more information,
see Application Insights for
ASP.NET Core. 

Example:
InstrumentationKey=123456789

 Billing configuration setting

REQ UIREDREQ UIRED N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

Yes Billing String Billing endpoint URI. For
more information on
obtaining the billing URI,
see gathering required
parameters. For more
information and a complete
list of regional endpoints,
see Custom subdomain
names for Cognitive
Services.

 Eula setting

REQ UIREDREQ UIRED N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

Yes Eula String License acceptance

Example:
Eula=accept

The ApplicationInsights  setting allows you to add Azure Application Insights telemetry support to your

container. Application Insights provides in-depth monitoring of your container. You can easily monitor your

container for availability, performance, and usage. You can also quickly identify and diagnose errors in your

container.

The following table describes the configuration settings supported under the ApplicationInsights  section.

The Billing  setting specifies the endpoint URI of the Text Analytics resource on Azure used to meter billing

information for the container. You must specify a value for this configuration setting, and the value must be a

valid endpoint URI for a _Text Analytics resource on Azure. The container reports usage about every 10 to 15

minutes.

This setting can be found in the following place:

Azure portal: Text AnalyticsText Analytics  Overview, labeled Endpoint

The Eula  setting indicates that you've accepted the license for the container. You must specify a value for this

configuration setting, and the value must be set to accept .

Cognitive Services containers are licensed under your agreement governing your use of Azure. If you do not

have an existing agreement governing your use of Azure, you agree that your agreement governing use of

https://docs.microsoft.com/en-us/azure/application-insights
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://go.microsoft.com/fwlink/?linkid=2018657


 Fluentd settings

N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

Host String The IP address or DNS host name of
the Fluentd server.

Port Integer The port of the Fluentd server.
The default value is 24224.

HeartbeatMs Integer The heartbeat interval, in milliseconds.
If no event traffic has been sent before
this interval expires, a heartbeat is sent
to the Fluentd server. The default value
is 60000 milliseconds (1 minute).

SendBufferSize Integer The network buffer space, in bytes,
allocated for send operations. The
default value is 32768 bytes (32
kilobytes).

TlsConnectionEstablishmentTimeoutMs Integer The timeout, in milliseconds, to
establish a SSL/TLS connection with
the Fluentd server. The default value is
10000 milliseconds (10 seconds).
If UseTLS  is set to false, this value is

ignored.

UseTLS Boolean Indicates whether the container should
use SSL/TLS for communicating with
the Fluentd server. The default value is
false.

 Http proxy credentials settings

N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

HTTP_PROXY string The proxy to use, for example, 
http://proxy:8888

<proxy-url>

HTTP_PROXY_CREDS string Any credentials needed to authenticate
against the proxy, for example, 
username:password . This value mustmust

be in lower-casebe in lower-case.

<proxy-user> string The user for the proxy.

Azure is the Microsoft Online Subscription Agreement, which incorporates the Online Services Terms. For

previews, you also agree to the Supplemental Terms of Use for Microsoft Azure Previews. By using the container

you agree to these terms.

Fluentd is an open-source data collector for unified logging. The Fluentd  settings manage the container's

connection to a Fluentd server. The container includes a Fluentd logging provider, which allows your container to

write logs and, optionally, metric data to a Fluentd server.

The following table describes the configuration settings supported under the Fluentd  section.

If you need to configure an HTTP proxy for making outbound requests, use these two arguments:

https://go.microsoft.com/fwlink/?linkid=2018755
https://go.microsoft.com/fwlink/?linkid=2018760
https://go.microsoft.com/fwlink/?linkid=2018815
https://www.fluentd.org


<proxy-password> string The password associated with 
<proxy-user>  for the proxy.

N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

docker run --rm -it -p 5000:5000 \
--memory 2g --cpus 1 \
--mount type=bind,src=/home/azureuser/output,target=/output \
<registry-location>/<image-name> \
Eula=accept \
Billing=<endpoint> \
ApiKey=<api-key> \
HTTP_PROXY=<proxy-url> \
HTTP_PROXY_CREDS=<proxy-user>:<proxy-password> \

 Logging settings

P RO VIDERP RO VIDER P URP O SEP URP O SE

Console The ASP.NET Core Console  logging provider. All of the

ASP.NET Core configuration settings and default values for
this logging provider are supported.

Debug The ASP.NET Core Debug  logging provider. All of the

ASP.NET Core configuration settings and default values for
this logging provider are supported.

Disk The JSON logging provider. This logging provider writes log
data to the output mount.

docker run --rm -it -p 5000:5000 \
--memory 2g --cpus 1 \
--mount type=bind,src=/home/azureuser/output,target=/output \
<registry-location>/<image-name> \
Eula=accept \
Billing=<endpoint> \
ApiKey=<api-key> \
Logging:Disk:Format=json

docker run --rm -it -p 5000:5000 \
--memory 2g --cpus 1 \
<registry-location>/<image-name> \
Eula=accept \
Billing=<endpoint> \
ApiKey=<api-key> \
Logging:Console:LogLevel:Default=Debug

  Disk loggingDisk logging

The Logging  settings manage ASP.NET Core logging support for your container. You can use the same

configuration settings and values for your container that you use for an ASP.NET Core application.

The following logging providers are supported by the container :

This container command stores logging information in the JSON format to the output mount:

This container command shows debugging information, prefixed with dbug , while the container is running:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/#console-provider
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/#debug-provider


N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

Format String The output format for log files.
Note:Note:  This value must be set to json

to enable the logging provider. If this
value is specified without also
specifying an output mount while
instantiating a container, an error
occurs.

MaxFileSize Integer The maximum size, in megabytes (MB),
of a log file. When the size of the
current log file meets or exceeds this
value, a new log file is started by the
logging provider. If -1 is specified, the
size of the log file is limited only by the
maximum file size, if any, for the
output mount. The default value is 1.

 Mount settings

O P T IO N A LO P T IO N A L N A M EN A M E DATA  T Y P EDATA  T Y P E DESC RIP T IO NDESC RIP T IO N

Not allowed Input String Text Analytics containers do
not use this.

Optional Output String The target of the output
mount. The default value is 
/output . This is the

location of the logs. This
includes container logs. 

Example:
--mount
type=bind,src=c:\output,target=/output

 Next steps

The Disk  logging provider supports the following configuration settings:

For more information about configuring ASP.NET Core logging support, see Settings file configuration.

Use bind mounts to read and write data to and from the container. You can specify an input mount or output

mount by specifying the --mount  option in the docker run command.

The Text Analytics containers don't use input or output mounts to store training or service data.

The exact syntax of the host mount location varies depending on the host operating system. Additionally, the

host computer's mount location may not be accessible due to a conflict between permissions used by the docker

service account and the host mount location permissions.

Review How to install and run containers

Use more Cognitive Services Containers

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support


   

 

Deploy and run container on Azure Container
Instance

 4/29/2021 • 7 minutes to read • Edit Online

 Prerequisites

IMPORTANTIMPORTANT

 

 

 Create an Azure Container Instance resource using the Azure portal

With the following steps, scale Azure Cognitive Services applications in the cloud easily with Azure Container

Instances. Containerization helps you focus on building your applications instead of managing the

infrastructure. For more information on using containers, see features and benefits.

The recipe works with any Cognitive Services container. The Cognitive Service resource must be created before

using the recipe. Each Cognitive Service that supports containers has a "How to install" article for installing and

configuring the service for a container. Some services require a file or set of files as input for the container, it is

important that you understand and have used the container successfully before using this solution.

An Azure resource for the Azure Cognitive Service you're using.

Cognitive Service endpoint URLendpoint URL  - review your specific service's "How to install" for the container, to find

where the endpoint URL is from within the Azure portal, and what a correct example of the URL looks

like. The exact format can change from service to service.

Cognitive Service keykey  - the keys are on the KeysKeys  page for the Azure resource. You only need one of the

two keys. The key is a string of 32 alpha-numeric characters.

A single Cognitive Services Container on your local host (your computer). Make sure you can:

Pull down the image with a docker pull  command.

Run the local container successfully with all required configuration settings with a docker run

command.

Call the container's endpoint, getting a response of HTTP 2xx and a JSON response back.

All variables in angle brackets, <> , need to be replaced with your own values. This replacement includes the

angle brackets.

The LUIS container requires a .gz  model file that is pulled in at runtime. The container must be able to access this model

file via a volume mount from the container instance. To upload a model file, follow these steps:

1. Create an Azure file share. Take note of the Azure Storage account name, key, and file share name as you'll need them

later.

2. export your LUIS model (packaged app) from the LUIS portal.

3. In the Azure portal, navigate to the Over viewOver view page of your storage account resource, and select File sharesFile shares .

4. Select the file share name that you recently created, then select UploadUpload. Then upload your packaged app.

Azure portal

CLI

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/containers/azure-container-instance-recipe.md
https://docs.microsoft.com/en-us/azure/container-instances/index
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support
https://docs.microsoft.com/en-us/azure/storage/files/storage-how-to-create-file-share
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-container-howto


SET T IN GSET T IN G VA L UEVA L UE

Subscription Select your subscription.

Resource group Select the available resource group or create a new one
such as cognitive-services .

Container name Enter a name such as cognitive-container-instance .

The name must be in lower caps.

Location Select a region for deployment.

Image type If your container image is stored in a container registry
that doesn’t require credentials, choose Public . If

accessing your container image requires credentials,
choose Private . Refer to container repositories and

images for details on whether or not the container image
is Public  or Private  ("Public Preview").

Image name Enter the Cognitive Services container location. The
location is what's used as an argument to the 
docker pull  command. Refer to the container

repositories and images for the available image names
and their corresponding repository.

The image name must be fully qualified specifying three
parts. First, the container registry, then the repository,
finally the image name: 
<container-registry>/<repository>/<image-name> .

Here is an example, 
mcr.microsoft.com/azure-cognitive-
services/keyphrase

would represent the Key Phrase Extraction image in the
Microsoft Container Registry under the Azure Cognitive
Services repository. Another example is, 
containerpreview.azurecr.io/microsoft/cognitive-
services-speech-to-text

which would represent the Speech to Text image in the
Microsoft repository of the Container Preview container
registry.

OS type Linux

Size Change size to the suggested recommendations for your
specific Cognitive Service container:
2 CPU cores
4 GB

SET T IN GSET T IN G VA L UEVA L UE

1. Go to the Create page for Container Instances.

2. On the BasicsBasics  tab, enter the following details:

3. On the NetworkingNetworking tab, enter the following details:

https://ms.portal.azure.com/#create/Microsoft.ContainerInstances
https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-image-tags
https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-image-tags


 Use the Container Instance
 

 

Ports Set the TCP port to 5000 . Exposes the container on

port 5000.

SET T IN GSET T IN G VA L UEVA L UE

KEYKEY VA L UEVA L UE

ApiKey Copied from the Keys and endpointKeys and endpoint  page of the
resource. It is a 32 alphanumeric-character string with no
spaces or dashes, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx .

Billing Your endpoint URL copied from the Keys andKeys and
endpointendpoint  page of the resource.

Eula accept

4. On the AdvancedAdvanced tab, enter the required Environment VariablesEnvironment Variables  for the container billing settings of

the Azure Container Instance resource:

5. Click Review and CreateReview and Create

6. After validation passes, click CreateCreate to finish the creation process

7. When the resource is successfully deployed, it's ready

Azure portal

CLI

1. Select the Over viewOver view  and copy the IP address. It will be a numeric IP address such as 55.55.55.55 .

2. Open a new browser tab and use the IP address, for example, 

http://<IP-address>:5000 (http://55.55.55.55:5000 ). You will see the container's home page, letting you

know the container is running.

3. Select Ser vice API Descr iptionSer vice API Descr iption to view the swagger page for the container.

4. Select any of the POSTPOST APIs and select Tr y it outTr y it out. The parameters are displayed including the input. Fill



in the parameters.

5. Select ExecuteExecute to send the request to your Container Instance.

You have successfully created and used Cognitive Services containers in Azure Container Instance.



   

 

Deploy a Text Analytics container to Azure
Kubernetes Service

 3/5/2021 • 12 minutes to read • Edit Online

 Prerequisites

 Create a Cognitive Services Text Analytics resource

Learn how to deploy the Azure Cognitive Services Text Analytics container image to Azure Kubernetes Service

(AKS). This procedure shows how to create a Text Analytics resource, how to create an associated sentiment

analysis image, and how to exercise this orchestration of the two from a browser. Using containers can shift your

attention away from managing infrastructure to instead focusing on application development.

This procedure requires several tools that must be installed and run locally. Don't use Azure Cloud Shell. You

need the following:

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin.

A text editor, for example, Visual Studio Code.

The Azure CLI installed.

The Kubernetes CLI installed.

An Azure resource with the correct pricing tier. Not all pricing tiers work with this container :

Azure Text AnalyticsAzure Text Analytics  resource with F0 or standard pricing tiers only.

Azure Cognitive Ser vicesAzure Cognitive Ser vices  resource with the S0 pricing tier.

SET T IN GSET T IN G VA L UEVA L UE

Name Enter a name (2-64 characters).

Subscription Select the appropriate subscription.

Location Select a nearby location.

Pricing tier Enter SS, the standard pricing tier.

Resource group Select an available resource group.

RESO URC E TA B  IN  P O RTA LRESO URC E TA B  IN  P O RTA L SET T IN GSET T IN G VA L UEVA L UE

Over viewOver view Endpoint Copy the endpoint. It appears
similar to 
https://my-
resource.cognitiveservices.azure.com/text/analytics/v3.0

.

1. Sign in to the Azure portal.

2. Select Create a resourceCreate a resource, and then go to AI + Machine LearningAI + Machine Learning > Text AnalyticsText Analytics . Or, go to Create

Text Analytics.

3. Enter all the required settings:

4. Select CreateCreate, and wait for the resource to be created. Your browser automatically redirects to the newly

created resource page.

5. Collect the configured endpoint  and an API key:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-use-kubernetes-service.md
https://azure.microsoft.com/free/cognitive-services
https://code.visualstudio.com/download
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://portal.azure.com
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics


 Create an Azure Kubernetes Service cluster resource

NOTENOTE

 

KeysKeys API Key Copy one of the two keys. It's a 32-
character alphanumeric string with
no spaces or dashes: <
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

>.

RESO URC E TA B  IN  P O RTA LRESO URC E TA B  IN  P O RTA L SET T IN GSET T IN G VA L UEVA L UE

SET T IN GSET T IN G VA L UEVA L UE

Subscription Select an appropriate subscription.

Resource group Select an available resource group.

Kubernetes cluster name Enter a name (lowercase).

Region Select a nearby location.

Kubernetes version Whatever value is marked as (default)(default) .

DNS name prefix Created automatically, but you can override.

Node size Standard DS2 v2:
2 vCPUs , 7 GB

Node count Leave the slider at the default value.

SET T IN GSET T IN G VA L UEVA L UE

HTTP application routing No

Networking configuration Basic

1. Go to Azure Kubernetes Service, and select CreateCreate.

2. On the BasicsBasics  tab, enter the following information:

3. On the Node poolsNode pools  tab, leave Vir tual nodesVir tual nodes  and VM scale setsVM scale sets  set to their default values.

4. On the AuthenticationAuthentication tab, leave Ser vice pr incipalSer vice pr incipal  and Enable RBACEnable RBAC set to their default values.

5. On the NetworkingNetworking tab, enter the following selections:

6. On the IntegrationsIntegrations  tab, make sure that Container monitor ingContainer monitor ing is set to EnabledEnabled, and leave LogLog

Analytics workspaceAnalytics workspace as the default value.

7. On the TagsTags  tab, leave the name/value pairs blank for now.

8. Select Review and CreateReview and Create.

9. After validation passes, select CreateCreate.

If validation fails, it might be because of a "Service principal" error. Go back to the AuthenticationAuthentication tab and then go back

to Review + createReview + create, where validation should run and then pass.

Key Phrase Extraction

Language Detection

https://ms.portal.azure.com/#create/microsoft.aks


 

  Deploy the Key Phrase Extraction container to an AKS clusterDeploy the Key Phrase Extraction container to an AKS cluster

Sentiment Analysis

az login

az aks get-credentials -n your-cluster-name -g -your-resource-group

Merged "your-cluster-name" as current context in /home/username/.kube/config

WARNINGWARNING

 az account set -s subscription-id

code .

1. Open the Azure CLI, and sign in to Azure.

2. Sign in to the AKS cluster. Replace your-cluster-name  and your-resource-group  with the appropriate

values.

After this command runs, it reports a message similar to the following:

If you have multiple subscriptions available to you on your Azure account and the az aks get-credentials

command returns with an error, a common problem is that you're using the wrong subscription. Set the context of

your Azure CLI session to use the same subscription that you created the resources with and try again.

3. Open the text editor of choice. This example uses Visual Studio Code.

4. Within the text editor, create a new file named keyphrase.yaml, and paste the following YAML into it. Be

sure to replace billing/value  and apikey/value  with your own information.



apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: keyphrase
spec:
  template:
    metadata:
      labels:
        app: keyphrase-app
    spec:
      containers:
      - name: keyphrase
        image: mcr.microsoft.com/azure-cognitive-services/keyphrase
        ports:
        - containerPort: 5000
        resources:
          requests:
            memory: 2Gi
            cpu: 1
          limits:
            memory: 4Gi
            cpu: 1
        env:
        - name: EULA
          value: "accept"
        - name: billing
          value: # {ENDPOINT_URI}
        - name: apikey
          value: # {API_KEY}

--- 
apiVersion: v1
kind: Service
metadata:
  name: keyphrase
spec:
  type: LoadBalancer
  ports:
  - port: 5000
  selector:
    app: keyphrase-app

kubectl apply -f keyphrase.yaml

deployment.apps "keyphrase" created
service "keyphrase" created

kubectl get pods

NAME                         READY     STATUS    RESTARTS   AGE
keyphrase-5c9ccdf575-mf6k5   1/1       Running   0          1m

5. Save the file, and close the text editor.

6. Run the Kubernetes apply  command with the keyphrase.yaml file as its target:

After the command successfully applies the deployment configuration, a message appears similar to the

following output:

7. Verify that the pod was deployed:

The output for the running status of the pod:

8. Verify that the service is available, and get the IP address.



  Verify the Key Phrase Extraction container instanceVerify the Key Phrase Extraction container instance

kubectl get services

NAME         TYPE           CLUSTER-IP    EXTERNAL-IP      PORT(S)          AGE
kubernetes   ClusterIP      10.0.0.1      <none>           443/TCP          2m
keyphrase    LoadBalancer   10.0.100.64   168.61.156.180   5000:31234/TCP   2m

The output for the running status of the keyphrase service in the pod:

{
  "documents": [
    {
      "id": "1",
      "text": "Hello world"
    },
    {
      "id": "2",
      "text": "Bonjour tout le monde"
    },
    {
      "id": "3",
      "text": "La carretera estaba atascada. Había mucho tráfico el día de ayer."
    },
    {
      "id": "4",
      "text": ":) :( :D"
    }
  ]
}

1. Select the Over viewOver view  tab, and copy the IP address.

2. Open a new browser tab, and enter the IP address. For example, enter 

http://<IP-address>:5000 (http://55.55.55.55:5000 ). The container's home page is displayed, which lets

you know the container is running.

3. Select the Ser vice API Descr iptionSer vice API Descr iption link to go to the container's Swagger page.

4. Choose any of the POSTPOST APIs, and select Tr y it outTr y it out. The parameters are displayed, which includes this

example input:

5. Replace the input with the following JSON content:



 Next steps

{
  "documents": [
    {
      "language": "en",
      "id": "7",
      "text": "I was fortunate to attend the KubeCon Conference in Barcelona, it is one of the best 
conferences I have ever attended. Great people, great sessions and I thoroughly enjoyed it!"
    }
  ]
}

{
  "documents": [
    {
      "id": "7",
      "keyPhrases": [
        "Great people",
        "great sessions",
        "KubeCon Conference",
        "Barcelona",
        "best conferences"
      ],
      "statistics": {
        "charactersCount": 176,
        "transactionsCount": 1
      }
    }
  ],
  "errors": [],
  "statistics": {
    "documentsCount": 1,
    "validDocumentsCount": 1,
    "erroneousDocumentsCount": 0,
    "transactionsCount": 1
  }
}

6. Set showStatsshowStats  to true .

7. Select ExecuteExecute to determine the sentiment of the text.

The model that's packaged in the container generates a score that ranges from 0 to 1, where 0 is negative

and 1 is positive.

The JSON response that's returned includes sentiment for the updated text input:

We can now correlate the document id  of the response payload's JSON data to the original request payload

document id . The resulting document has a keyPhrases  array, which contains the list of key phrases that have

been extracted from the corresponding input document. Additionally, there are various statistics such as 

characterCount  and transactionCount  for each resulting document.

Use more Cognitive Services containers

Use the Text Analytics Connected Service

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/index.html#body


   

 

Configure Azure Cognitive Services virtual networks
 6/15/2021 • 16 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

 Scenarios

 Supported regions and service offerings

Azure Cognitive Services provides a layered security model. This model enables you to secure your Cognitive

Services accounts to a specific subset of networks. When network rules are configured, only applications

requesting data over the specified set of networks can access the account. You can limit access to your resources

with request filtering. Allowing only requests originating from specified IP addresses, IP ranges or from a list of

subnets in Azure Virtual Networks.

An application that accesses a Cognitive Services resource when network rules are in effect requires

authorization. Authorization is supported with Azure Active Directory (Azure AD) credentials or with a valid API

key.

Turning on firewall rules for your Cognitive Services account blocks incoming requests for data by default. In order to

allow requests through, one of the following conditions needs to be met:

The request should originate from a service operating within an Azure Virtual Network (VNet) on the

allowed subnet list of the target Cognitive Services account. The endpoint in requests originated from

VNet needs to be set as the custom subdomain of your Cognitive Services account.

Or the request should originate from an allowed list of IP addresses.

Requests that are blocked include those from other Azure services, from the Azure portal, from logging and

metrics services, and so on.

This article has been updated to use the Azure Az PowerShell module. The Az PowerShell module is the recommended

PowerShell module for interacting with Azure. To get started with the Az PowerShell module, see Install Azure PowerShell.

To learn how to migrate to the Az PowerShell module, see Migrate Azure PowerShell from AzureRM to Az.

To secure your Cognitive Services resource, you should first configure a rule to deny access to traffic from all

networks (including internet traffic) by default. Then, you should configure rules that grant access to traffic from

specific VNets. This configuration enables you to build a secure network boundary for your applications. You can

also configure rules to grant access to traffic from select public internet IP address ranges, enabling connections

from specific internet or on-premises clients.

Network rules are enforced on all network protocols to Azure Cognitive Services, including REST and

WebSocket. To access data using tools such as the Azure test consoles, explicit network rules must be

configured. You can apply network rules to existing Cognitive Services resources, or when you create new

Cognitive Services resources. Once network rules are applied, they're enforced for all requests.

Virtual networks (VNETs) are supported in regions where Cognitive Services are available. Currently multi-

service resource does not support VNET. Cognitive Services supports service tags for network rules

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/cognitive-services-virtual-networks.md
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/migrate-from-azurerm-to-az
https://azure.microsoft.com/global-infrastructure/services/


NOTENOTE

 Change the default network access rule

WARNINGWARNING

  Managing default network access rulesManaging default network access rules

 

 

configuration. The services listed below are included in the CognitiveSer vicesManagementCognitiveSer vicesManagement service tag.

Anomaly Detector

Computer Vision

Content Moderator

Custom Vision

Face

Form Recognizer

Immersive Reader

Language Understanding (LUIS)

Personalizer

Speech Services

Text Analytics

QnA Maker

Translator Text

If you're using LUIS or Speech Services, the CognitiveSer vicesManagementCognitiveSer vicesManagement  tag only enables you use the service using

the SDK or REST API. To access and use LUIS portal and/or Speech Studio from a virtual network, you will need to use the

following tags:

AzureActiveDirector yAzureActiveDirector y

AzureFrontDoor.FrontendAzureFrontDoor.Frontend

AzureResourceManagerAzureResourceManager

CognitiveSer vicesManagementCognitiveSer vicesManagement

By default, Cognitive Services resources accept connections from clients on any network. To limit access to

selected networks, you must first change the default action.

Making changes to network rules can impact your applications' ability to connect to Azure Cognitive Services. Setting the

default network rule to denydeny blocks all access to the data unless specific network rules that grantgrant  access are also applied.

Be sure to grant access to any allowed networks using network rules before you change the default rule to deny access. If

you are allow listing IP addresses for your on-premises network, be sure to add all possible outgoing public IP addresses

from your on-premises network.

You can manage default network access rules for Cognitive Services resources through the Azure portal,

PowerShell, or the Azure CLI.

Azure portal

PowerShell

Azure CLI

1. Go to the Cognitive Services resource you want to secure.

2. Select the RESOURCE MANAGEMENTRESOURCE MANAGEMENT menu called Vir tual networkVir tual network .



 Grant access from a virtual network

3. To deny access by default, choose to allow access from Selected networksSelected networks . With the SelectedSelected

networksnetworks  setting alone, unaccompanied by configured Vir tual networksVir tual networks  or Address rangesAddress ranges  - all

access is effectively denied. When all access is denied, requests attempting to consume the Cognitive

Services resource aren't permitted. The Azure portal, Azure PowerShell or, Azure CLI can still be used to

configure the Cognitive Services resource.

4. To allow traffic from all networks, choose to allow access from All networksAll networks .

5. Select SaveSave to apply your changes.

You can configure Cognitive Services resources to allow access only from specific subnets. The allowed subnets

may belong to a VNet in the same subscription, or in a different subscription, including subscriptions belonging

to a different Azure Active Directory tenant.

Enable a service endpoint for Azure Cognitive Services within the VNet. The service endpoint routes traffic from

the VNet through an optimal path to the Azure Cognitive Services service. The identities of the subnet and the

virtual network are also transmitted with each request. Administrators can then configure network rules for the

Cognitive Services resource that allow requests to be received from specific subnets in a VNet. Clients granted

access via these network rules must continue to meet the authorization requirements of the Cognitive Services

resource to access the data.

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview


  Required permissionsRequired permissions

NOTENOTE

  Managing virtual network rulesManaging virtual network rules

 

 

Each Cognitive Services resource supports up to 100 virtual network rules, which may be combined with IP

network rules.

To apply a virtual network rule to a Cognitive Services resource, the user must have the appropriate permissions

for the subnets being added. The required permission is the default Contributor role, or the Cognitive Services

Contributor role. Required permissions can also be added to custom role definitions.

Cognitive Services resource and the virtual networks granted access may be in different subscriptions, including

subscriptions that are a part of a different Azure AD tenant.

Configuration of rules that grant access to subnets in virtual networks that are a part of a different Azure Active Directory

tenant are currently only supported through Powershell, CLI and REST APIs. Such rules cannot be configured through the

Azure portal, though they may be viewed in the portal.

You can manage virtual network rules for Cognitive Services resources through the Azure portal, PowerShell, or

the Azure CLI.

Azure portal

PowerShell

Azure CLI

1. Go to the Cognitive Services resource you want to secure.

2. Select the RESOURCE MANAGEMENTRESOURCE MANAGEMENT menu called Vir tual networkVir tual network .

3. Check that you've selected to allow access from Selected networksSelected networks .

4. To grant access to a virtual network with an existing network rule, under Vir tual networksVir tual networks , select AddAdd

existing vir tual networkexisting vir tual network .

5. Select the Vir tual networksVir tual networks  and SubnetsSubnets  options, and then select EnableEnable.



6. To create a new virtual network and grant it access, select Add new vir tual networkAdd new vir tual network .

7. Provide the information necessary to create the new virtual network, and then select CreateCreate.



NOTENOTE
If a service endpoint for Azure Cognitive Services wasn't previously configured for the selected virtual network and

subnets, you can configure it as part of this operation.

Presently, only virtual networks belonging to the same Azure Active Directory tenant are shown for selection

during rule creation. To grant access to a subnet in a virtual network belonging to another tenant, please use

Powershell, CLI or REST APIs.

8. To remove a virtual network or subnet rule, select ...... to open the context menu for the virtual network or

subnet, and select RemoveRemove.



IMPORTANTIMPORTANT

 Grant access from an internet IP range

TIPTIP

  Configuring access from on-premises networksConfiguring access from on-premises networks

9. Select SaveSave to apply your changes.

Be sure to set the default rule to denydeny , or network rules have no effect.

You can configure Cognitive Services resources to allow access from specific public internet IP address ranges.

This configuration grants access to specific services and on-premises networks, effectively blocking general

internet traffic.

Provide allowed internet address ranges using CIDR notation in the form 16.17.18.0/24  or as individual IP

addresses like 16.17.18.19 .

Small address ranges using "/31" or "/32" prefix sizes are not supported. These ranges should be configured using

individual IP address rules.

IP network rules are only allowed for public internetpublic internet IP addresses. IP address ranges reserved for private

networks (as defined in RFC 1918) aren't allowed in IP rules. Private networks include addresses that start with 

10.* , 172.16.*  - 172.31.* , and 192.168.* .

Only IPV4 addresses are supported at this time. Each Cognitive Services resource supports up to 100 IP network

rules, which may be combined with Virtual network rules.

To grant access from your on-premises networks to your Cognitive Services resource with an IP network rule,

you must identify the internet facing IP addresses used by your network. Contact your network administrator

for help.

If you're using ExpressRoute on-premises for public peering or Microsoft peering, you'll need to identify the NAT

https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc1918#section-3
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction


  Managing IP network rulesManaging IP network rules

 

 

IP addresses. For public peering, each ExpressRoute circuit by default uses two NAT IP addresses. Each is applied

to Azure service traffic when the traffic enters the Microsoft Azure network backbone. For Microsoft peering, the

NAT IP addresses that are used are either customer provided or are provided by the service provider. To allow

access to your service resources, you must allow these public IP addresses in the resource IP firewall setting. To

find your public peering ExpressRoute circuit IP addresses, open a support ticket with ExpressRoute via the

Azure portal. Learn more about NAT for ExpressRoute public and Microsoft peering.

You can manage IP network rules for Cognitive Services resources through the Azure portal, PowerShell, or the

Azure CLI.

Azure portal

PowerShell

Azure CLI

1. Go to the Cognitive Services resource you want to secure.

2. Select the RESOURCE MANAGEMENTRESOURCE MANAGEMENT menu called Vir tual networkVir tual network .

3. Check that you've selected to allow access from Selected networksSelected networks .

4. To grant access to an internet IP range, enter the IP address or address range (in CIDR format) under

FirewallFirewall  > Address RangeAddress Range. Only valid public IP (non-reserved) addresses are accepted.

5. To remove an IP network rule, select the trash can icon next to the address range.

https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/overview
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-nat
https://tools.ietf.org/html/rfc4632


IMPORTANTIMPORTANT

 Use private endpoints

  Conceptual overviewConceptual overview

6. Select SaveSave to apply your changes.

Be sure to set the default rule to denydeny , or network rules have no effect.

You can use private endpoints for your Cognitive Services resources to allow clients on a virtual network (VNet)

to securely access data over a Private Link. The private endpoint uses an IP address from the VNet address space

for your Cognitive Services resource. Network traffic between the clients on the VNet and the resource traverses

the VNet and a private link on the Microsoft backbone network, eliminating exposure from the public internet.

Private endpoints for Cognitive Services resources let you:

Secure your Cognitive Services resource by configuring the firewall to block all connections on the public

endpoint for the Cognitive Services service.

Increase security for the VNet, by enabling you to block exfiltration of data from the VNet.

Securely connect to Cognitive Services resources from on-premises networks that connect to the VNet using

VPN or ExpressRoutes with private-peering.

A private endpoint is a special network interface for an Azure resource in your VNet. Creating a private endpoint

for your Cognitive Services resource provides secure connectivity between clients in your VNet and your

resource. The private endpoint is assigned an IP address from the IP address range of your VNet. The connection

between the private endpoint and the Cognitive Services service uses a secure private link.

Applications in the VNet can connect to the service over the private endpoint seamlessly, using the same

connection strings and authorization mechanisms that they would use otherwise. The exception is the Speech

Services, which require a separate endpoint. See the section on Private endpoints with the Speech Services.

Private endpoints can be used with all protocols supported by the Cognitive Services resource, including REST.

Private endpoints can be created in subnets that use Service Endpoints. Clients in a subnet can connect to one

https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://docs.microsoft.com/en-us/azure/private-link/private-link-overview
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-locations
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview


  Private endpointsPrivate endpoints

  Connecting to private endpointsConnecting to private endpoints

  Private endpoints with the Speech ServicesPrivate endpoints with the Speech Services

  DNS changes for private endpointsDNS changes for private endpoints

TIPTIP

Cognitive Services resource using private endpoint, while using service endpoints to access others.

When you create a private endpoint for a Cognitive Services resource in your VNet, a consent request is sent for

approval to the Cognitive Services resource owner. If the user requesting the creation of the private endpoint is

also an owner of the resource, this consent request is automatically approved.

Cognitive Services resource owners can manage consent requests and the private endpoints, through the

'Private endpoints' tab for the Cognitive Services resource in the Azure portal.

When creating the private endpoint, you must specify the Cognitive Services resource it connects to. For more

information on creating a private endpoint, see:

Create a private endpoint using the Private Link Center in the Azure portal

Create a private endpoint using Azure CLI

Create a private endpoint using Azure PowerShell

Clients on a VNet using the private endpoint should use the same connection string for the Cognitive Services

resource as clients connecting to the public endpoint. The exception is the Speech Services, which require a

separate endpoint. See the section on Private endpoints with the Speech Services. We rely upon DNS resolution

to automatically route the connections from the VNet to the Cognitive Services resource over a private link.

We create a private DNS zone attached to the VNet with the necessary updates for the private endpoints, by

default. However, if you're using your own DNS server, you may need to make additional changes to your DNS

configuration. The section on DNS changes below describes the updates required for private endpoints.

See Using Speech Services with private endpoints provided by Azure Private Link.

When you create a private endpoint, the DNS CNAME resource record for the Cognitive Services resource is

updated to an alias in a subdomain with the prefix 'privatelink'. By default, we also create a private DNS zone,

corresponding to the 'privatelink' subdomain, with the DNS A resource records for the private endpoints.

When you resolve the endpoint URL from outside the VNet with the private endpoint, it resolves to the public

endpoint of the Cognitive Services resource. When resolved from the VNet hosting the private endpoint, the

endpoint URL resolves to the private endpoint's IP address.

This approach enables access to the Cognitive Services resource using the same connection string for clients in

the VNet hosting the private endpoints and clients outside the VNet.

If you are using a custom DNS server on your network, clients must be able to resolve the fully qualified domain

name (FQDN) for the Cognitive Services resource endpoint to the private endpoint IP address. Configure your

DNS server to delegate your private link subdomain to the private DNS zone for the VNet.

When using a custom or on-premises DNS server, you should configure your DNS server to resolve the Cognitive

Services resource name in the 'privatelink' subdomain to the private endpoint IP address. You can do this by delegating

the 'privatelink' subdomain to the private DNS zone of the VNet, or configuring the DNS zone on your DNS server and

adding the DNS A records.

For more information on configuring your own DNS server to support private endpoints, refer to the following

articles:

https://portal.azure.com
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-portal
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-cli
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-powershell
https://docs.microsoft.com/en-us/azure/dns/private-dns-overview
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-services-private-link
https://docs.microsoft.com/en-us/azure/dns/private-dns-overview


  PricingPricing

 Next steps

Name resolution for resources in Azure virtual networks

DNS configuration for private endpoints

For pricing details, see Azure Private Link pricing.

Explore the various Azure Cognitive Services

Learn more about Azure Virtual Network Service Endpoints

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-instances
https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://azure.microsoft.com/pricing/details/private-link
https://docs.microsoft.com/en-us/azure/cognitive-services/what-are-cognitive-services
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview


   

 

Authenticate requests to Azure Cognitive Services
 7/22/2021 • 8 minutes to read • Edit Online

 Prerequisites

 Authentication headers

H EA DERH EA DER DESC RIP T IO NDESC RIP T IO N

Ocp-Apim-Subscription-Key Use this header to authenticate with a subscription key for a
specific service or a multi-service subscription key.

Ocp-Apim-Subscription-Region This header is only required when using a multi-service
subscription key with the Translator service. Use this header
to specify the subscription region.

Authorization Use this header if you are using an authentication token. The
steps to perform a token exchange are detailed in the
following sections. The value provided follows this format: 
Bearer <TOKEN> .

 Authenticate with a single-service subscription key

curl -X GET 'https://api.cognitive.microsoft.com/bing/v7.0/search?q=Welsch%20Pembroke%20Corgis' \
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' | json_pp

Each request to an Azure Cognitive Service must include an authentication header. This header passes along a

subscription key or access token, which is used to validate your subscription for a service or group of services.

In this article, you'll learn about three ways to authenticate a request and the requirements for each.

Authenticate with a single-service or multi-service subscription key

Authenticate with a token

Authenticate with Azure Active Directory (AAD)

Before you make a request, you need an Azure account and an Azure Cognitive Services subscription. If you

already have an account, go ahead and skip to the next section. If you don't have an account, we have a guide to

get you set up in minutes: Create a Cognitive Services account for Azure.

You can get your subscription key from the Azure portal after creating your account.

Let's quickly review the authentication headers available for use with Azure Cognitive Services.

The first option is to authenticate a request with a subscription key for a specific service, like Translator. The keys

are available in the Azure portal for each resource that you've created. To use a subscription key to authenticate

a request, it must be passed along as the Ocp-Apim-Subscription-Key  header.

These sample requests demonstrates how to use the Ocp-Apim-Subscription-Key  header. Keep in mind, when

using this sample you'll need to include a valid subscription key.

This is a sample call to the Bing Web Search API:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/authentication.md
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://azure.microsoft.com/free/cognitive-services/
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference


curl -X POST 'https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=en&to=de' \
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' \
-H 'Content-Type: application/json' \
--data-raw '[{ "text": "How much for the cup of coffee?" }]' | json_pp

 Authenticate with a multi-service subscription key

WARNINGWARNING

  Supported regionsSupported regions

This is a sample call to the Translator service:

The following video demonstrates using a Cognitive Services key.

At this time, the multi-service key doesn't support: QnA Maker, Immersive Reader, Personalizer, and Anomaly Detector.

This option also uses a subscription key to authenticate requests. The main difference is that a subscription key

is not tied to a specific service, rather, a single key can be used to authenticate requests for multiple Cognitive

Services. See Cognitive Services pricing for information about regional availability, supported features, and

pricing.

The subscription key is provided in each request as the Ocp-Apim-Subscription-Key  header.

When using the multi-service subscription key to make a request to api.cognitive.microsoft.com , you must

include the region in the URL. For example: westus.api.cognitive.microsoft.com .

When using multi-service subscription key with the Translator service, you must specify the subscription region

with the Ocp-Apim-Subscription-Region  header.

Multi-service authentication is supported in these regions:

australiaeast

brazilsouth

canadacentral

centralindia

eastasia

https://azure.microsoft.com/pricing/details/cognitive-services/
https://www.youtube.com/watch?v=psHtA1p7Cas&feature=youtu.be


  Sample requestsSample requests

curl -X GET 'https://YOUR-REGION.api.cognitive.microsoft.com/bing/v7.0/search?q=Welsch%20Pembroke%20Corgis' 
\
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' | json_pp

curl -X POST 'https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=en&to=de' \
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' \
-H 'Ocp-Apim-Subscription-Region: YOUR_SUBSCRIPTION_REGION' \
-H 'Content-Type: application/json' \
--data-raw '[{ "text": "How much for the cup of coffee?" }]' | json_pp

 Authenticate with an authentication token

NOTENOTE

eastus

japaneast

northeurope

southcentralus

southeastasia

uksouth

westcentralus

westeurope

westus

westus2

francecentral

koreacentral

northcentralus

southafricanorth

uaenorth

switzerlandnorth

This is a sample call to the Bing Web Search API:

This is a sample call to the Translator service:

Some Azure Cognitive Services accept, and in some cases require, an authentication token. Currently, these

services support authentication tokens:

Text Translation API

Speech Services: Speech-to-text REST API

Speech Services: Text-to-speech REST API

QnA Maker also uses the Authorization header, but requires an endpoint key. For more information, see QnA Maker: Get

answer from knowledge base.

https://docs.microsoft.com/en-us/azure/cognitive-services/qnamaker/quickstarts/get-answer-from-knowledge-base-using-url-tool


WARNINGWARNING

  Sample requestsSample requests

curl -v -X POST \
"https://YOUR-REGION.api.cognitive.microsoft.com/sts/v1.0/issueToken" \
-H "Content-type: application/x-www-form-urlencoded" \
-H "Content-length: 0" \
-H "Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY"

curl -X POST 'https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=en&to=de' \
-H 'Authorization: Bearer YOUR_AUTH_TOKEN' \
-H 'Content-Type: application/json' \
--data-raw '[{ "text": "How much for the cup of coffee?" }]' | json_pp

 Authenticate with Azure Active Directory

The services that support authentication tokens may change over time, please check the API reference for a service

before using this authentication method.

Both single service and multi-service subscription keys can be exchanged for authentication tokens.

Authentication tokens are valid for 10 minutes.

Authentication tokens are included in a request as the Authorization  header. The token value provided must be

preceded by Bearer , for example: Bearer YOUR_AUTH_TOKEN .

Use this URL to exchange a subscription key for an authentication token: 

https://YOUR-REGION.api.cognitive.microsoft.com/sts/v1.0/issueToken .

These multi-service regions support token exchange:

australiaeast

brazilsouth

canadacentral

centralindia

eastasia

eastus

japaneast

northeurope

southcentralus

southeastasia

uksouth

westcentralus

westeurope

westus

westus2

After you get an authentication token, you'll need to pass it in each request as the Authorization  header. This is

a sample call to the Translator service:



IMPORTANTIMPORTANT

  Create a resource with a custom subdomainCreate a resource with a custom subdomain

  Assign a role to a service principalAssign a role to a service principal

NOTENOTE

AAD authentication always needs to be used together with custom subdomain name of your Azure resource. Regional

endpoints do not support AAD authentication.

In the previous sections, we showed you how to authenticate against Azure Cognitive Services using a single-

service or multi-service subscription key. While these keys provide a quick and easy path to start development,

they fall short in more complex scenarios that require Azure role-based access control (Azure RBAC). Let's take a

look at what's required to authenticate using Azure Active Directory (AAD).

In the following sections, you'll use either the Azure Cloud Shell environment or the Azure CLI to create a

subdomain, assign roles, and obtain a bearer token to call the Azure Cognitive Services. If you get stuck, links

are provided in each section with all available options for each command in Azure Cloud Shell/Azure CLI.

The first step is to create a custom subdomain. If you want to use an existing Cognitive Services resource which

does not have custom subdomain name, follow the instructions in Cognitive Services Custom Subdomains to

enable custom subdomain for your resource.

Set-AzContext -SubscriptionName <SubscriptionName>

$account = New-AzCognitiveServicesAccount -ResourceGroupName <RESOURCE_GROUP_NAME> -name 
<ACCOUNT_NAME> -Type <ACCOUNT_TYPE> -SkuName <SUBSCRIPTION_TYPE> -Location <REGION> -
CustomSubdomainName <UNIQUE_SUBDOMAIN>

1. Start by opening the Azure Cloud Shell. Then select a subscription:

2. Next, create a Cognitive Services resource with a custom subdomain. The subdomain name needs to be

globally unique and cannot include special characters, such as: ".", "!", ",".

3. If successful, the EndpointEndpoint should show the subdomain name unique to your resource.

Now that you have a custom subdomain associated with your resource, you're going to need to assign a role to

a service principal.

Keep in mind that Azure role assignments may take up to five minutes to propagate.

$SecureStringPassword = ConvertTo-SecureString -String <YOUR_PASSWORD> -AsPlainText -Force

$app = New-AzADApplication -DisplayName <APP_DISPLAY_NAME> -IdentifierUris <APP_URIS> -Password 
$SecureStringPassword

New-AzADServicePrincipal -ApplicationId <APPLICATION_ID>

1. First, let's register an AAD application.

You're going to need the ApplicationIdApplicationId in the next step.

2. Next, you need to create a service principal for the AAD application.

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://docs.microsoft.com/en-us/powershell/module/az.accounts/set-azcontext
https://docs.microsoft.com/en-us/powershell/module/az.cognitiveservices/new-azcognitiveservicesaccount
https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azadapplication
https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azadserviceprincipal


  Sample requestSample request

NOTENOTE

NOTENOTE

New-AzRoleAssignment -ObjectId <SERVICE_PRINCIPAL_OBJECTID> -Scope <ACCOUNT_ID> -RoleDefinitionName 
"Cognitive Services User"

If you register an application in the Azure portal, this step is completed for you.

3. The last step is to assign the "Cognitive Services User" role to the service principal (scoped to the

resource). By assigning a role, you're granting service principal access to this resource. You can grant the

same service principal access to multiple resources in your subscription.

The ObjectId of the service principal is used, not the ObjectId for the application. The ACCOUNT_ID will be the

Azure resource Id of the Cognitive Services account you created. You can find Azure resource Id from "properties"

of the resource in Azure portal.

In this sample, a password is used to authenticate the service principal. The token provided is then used to call

the Computer Vision API.

$context=Get-AzContext
$context.Tenant.Id

NOTENOTE

 

 

$authContext = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext" -
ArgumentList "https://login.windows.net/<TENANT_ID>"
$secureSecretObject = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.SecureClientSecret" 
-ArgumentList $SecureStringPassword   
$clientCredential = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.ClientCredential" -
ArgumentList $app.ApplicationId, $secureSecretObject
$token=$authContext.AcquireTokenAsync("https://cognitiveservices.azure.com/", 
$clientCredential).Result
$token

1. Get your TenantIdTenantId:

2. Get a token:

If you're using Azure Cloud Shell, the SecureClientSecret  class isn't available.

PowerShell

Azure Cloud Shell

3. Call the Computer Vision API:

$url = $account.Endpoint+"vision/v1.0/models"
$result = Invoke-RestMethod -Uri $url  -Method Get -Headers 
@{"Authorization"=$token.CreateAuthorizationHeader()} -Verbose
$result | ConvertTo-Json

https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azroleassignment


 Authorize access to managed identities

  Enable managed identities on a VMEnable managed identities on a VM

 See also

Alternatively, the service principal can be authenticated with a certificate. Besides service principal, user principal

is also supported by having permissions delegated through another AAD application. In this case, instead of

passwords or certificates, users would be prompted for two-factor authentication when acquiring token.

Cognitive Services support Azure Active Directory (Azure AD) authentication with managed identities for Azure

resources. Managed identities for Azure resources can authorize access to Cognitive Services resources using

Azure AD credentials from applications running in Azure virtual machines (VMs), function apps, virtual machine

scale sets, and other services. By using managed identities for Azure resources together with Azure AD

authentication, you can avoid storing credentials with your applications that run in the cloud.

Before you can use managed identities for Azure resources to authorize access to Cognitive Services resources

from your VM, you must enable managed identities for Azure resources on the VM. To learn how to enable

managed identities for Azure Resources, see:

Azure portal

Azure PowerShell

Azure CLI

Azure Resource Manager template

Azure Resource Manager client libraries

For more information about managed identities, see Managed identities for Azure resources.

What is Cognitive Services?

Cognitive Services pricing

Custom subdomains

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-portal-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-powershell-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-cli-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-template-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-sdk-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/what-are-cognitive-services
https://azure.microsoft.com/pricing/details/cognitive-services/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains


   

 

Migrate to version 3.x of the Text Analytics API
 7/8/2021 • 4 minutes to read • Edit Online

 

 

TIPTIP

  Feature changesFeature changes

  Steps to migrateSteps to migrate
  REST APIREST API

  Client librariesClient libraries

 See also

If you're using version 2.1 of the Text Analytics API, this article will help you upgrade your application to use

version 3.x. Version 3.1 and 3.0 are generally available and introduce new features such as expanded Named

Entity Recognition (NER) and model versioning. Version of v3.1 is also available, which adds features such as

opinion mining and Personally Identifying Information detection. The models used in v2 or 3.1-preview.x will not

receive future updates.

Sentiment analysis

NER and entity linking

Language detection

Key phrase extraction

Want to use the latest version of the API in your application? See the sentiment analysis how-to article and quickstart for

information on the current version of the API.

Sentiment Analysis in version 2.1 returns sentiment scores between 0 and 1 for each document sent to the API,

with scores closer to 1 indicating more positive sentiment. Version 3 instead returns sentiment labels (such as

"positive" or "negative") for both the sentences and the document as a whole, and their associated confidence

scores.

If your application uses the REST API, update its request endpoint to the v3 endpoint for sentiment analysis. For

example: https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/sentiment . You will

also need to update the application to use the sentiment labels returned in the API's response.

See the reference documentation for examples of the JSON response.

Version 2.1

Version 3.0

Version 3.1

To use the latest version of the Text Analytics v3 client library, you will need to download the latest software

package in the Azure.AI.TextAnalytics  namespace. The Setting upSetting up section in the quickstart article lists the

commands you can use for your preferred language, with example code.

What is the Text Analytics API

Language support

Model versioning

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/migration-guide.md
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1/operations/56f30ceeeda5650db055a3c9
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0/operations/Sentiment
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Sentiment


   

 

Example user scenarios for the Text Analytics API
 3/5/2021 • 2 minutes to read • Edit Online

 Analyze Survey results

 Analyze recorded inbound customer calls

 Process and categorize support incidents

 Monitor your product's social media feeds

 Classify and redact documents that have sensitive information

The Text Analytics API is a cloud-based service that provides advanced natural language processing over text.

This article describes some example use cases for integrating the API into your business solutions and

processes.

Draw insights from customer and employee survey results by processing the raw text responses using

Sentiment Analysis. Aggregate the findings for analysis, follow up, and driving engagements.

Extract insights from customer services calls using Speech-to-Text, Sentiment Analysis, and Key Phrase

Extraction. Display the results in Power BI dashboard or a portal to better understand customers, highlight

customer service trends, and drive customer engagement. Send API requests as a batch for reporting, or in real-

time for intervention. See the sample code on GitHub.

Use Key Phrase Extraction and Entity Recognition to process support requests submitted in unstructured textual

format. Use the extracted phrases and entities to categorize the requests for resource planning and trend

analysis.

Monitor user product feedback on your product's twitter or Facebook page. Use the data to analyze customer

sentiment toward new products launches, extract key phrases about features and feature requests, or address

customer complaints as they happen. See the example Microsoft Power Automate template.

Use Named Entity Recognition to identify personal and sensitive information in documents. Use the data to

classify documents or redact them so they can be shared safely.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/text-analytics-user-scenarios.md
https://github.com/rlagh2/callcenteranalytics
https://flow.microsoft.com/galleries/public/templates/2680d2227d074c4d901e36c66e68f6f9/run-sentiment-analysis-on-tweets-and-push-results-to-a-power-bi-dataset/


 Perform opinion mining

 Next steps

Group opinions related to specific aspects of a product or service in surveys, customer feedback, or wherever

text holds an opinion about an aspect. Use it to help guide product launches and improvements, marketing

efforts, or highlight how your product or service is performing.

What is the Text Analytics API?

Send a request to the Text Analytics API using the client library



   

 

Supported entity categories in the Text Analytics API
v3

 7/8/2021 • 33 minutes to read • Edit Online

 Entity categories
 

 

C AT EGO RYC AT EGO RY DESC RIP T IO NDESC RIP T IO N

Person Names of people.

PersonType Job types or roles held by a person.

Location Natural and human-made landmarks, structures,
geographical features, and geopolitical entities

Organization Companies, political groups, musical bands, sport clubs,
government bodies, and public organizations.

Event Historical, social, and naturally occurring events.

Product Physical objects of various categories.

Skill A capability, skill, or expertise.

Address Full mailing addresses.

Phone number Phone numbers.

Email Email addresses.

URL URLs to websites.

IP Network IP addresses.

Use this article to find the entity categories that can be returned by Named Entity Recognition (NER). NER runs a

predictive model to identify and categorize named entities from an input document.

NER v3.1 is also available, which includes the ability to detect personal ( PII ) and health ( PHI ) information.

Additionally, click on the HealthHealth tab to see a list of supported categories in Text Analytics for health.

You can find a list of types returned by version 2.1 in the migration guide

General

PII

Health

The NER feature for Text Analytics returns the following general (non identifying) entity categories. for example

when sending requests to the /entities/recognition/general  endpoint.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/named-entity-types.md


DateTime Dates and times of day.

Quantity Numerical measurements and units.

C AT EGO RYC AT EGO RY DESC RIP T IO NDESC RIP T IO N

  Category: PersonCategory: Person

  Category: PersonTypeCategory: PersonType

  Category: LocationCategory: Location

  SubcategoriesSubcategories

This category contains the following entity:

EntityEntity

Person

DetailsDetails

Names of people.

Suppor ted document languagesSuppor ted document languages

ar , cs , da , nl , en , fi , fr , de , he , 

hu , it , ja , ko , no , pl , pt-br , pt - pt , ru , es , sv , tr

This category contains the following entity:

EntityEntity

PersonType

DetailsDetails

Job types or roles held by a person

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

This category contains the following entity:

EntityEntity

Location

DetailsDetails

Natural and human-made landmarks, structures, geographical features, and geopolitical entities.

Suppor ted document languagesSuppor ted document languages

ar , cs , da , nl , en , fi , fr , de , he , hu , it , ja , ko , no , pl , pt-br , pt-pt , ru , es , sv , tr

The entity in this category can have the following subcategories.

Entity subcategor yEntity subcategor y

Geopolitical Entity (GPE)

DetailsDetails

Cities, countries/regions, states.



  Category: OrganizationCategory: Organization

  SubcategoriesSubcategories

  Category: EventCategory: Event

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

Structural

Manmade structures.

en

Geographical

Geographic and natural features such as rivers, oceans, and deserts.

en

This category contains the following entity:

EntityEntity

Organization

DetailsDetails

Companies, political groups, musical bands, sport clubs, government bodies, and public organizations.

Nationalities and religions are not included in this entity type.

Suppor ted document languagesSuppor ted document languages

ar , cs , da , nl , en , fi , fr , de , he , hu , it , ja , ko , no , pl , pt-br , pt-pt , ru , es , sv , tr

The entity in this category can have the following subcategories.

Entity subcategor yEntity subcategor y

Medical

DetailsDetails

Medical companies and groups.

Suppor ted document languagesSuppor ted document languages

en

Stock exchange

Stock exchange groups.

en

Sports

Sports-related organizations.

en

This category contains the following entity:

EntityEntity

Event



  SubcategoriesSubcategories

  Category: ProductCategory: Product

  SubcategoriesSubcategories

DetailsDetails

Historical, social, and naturally occurring events.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt  and pt-br

The entity in this category can have the following subcategories.

Entity subcategor yEntity subcategor y

Cultural

DetailsDetails

Cultural events and holidays.

Suppor ted document languagesSuppor ted document languages

en

Natural

Naturally occurring events.

en

Sports

Sporting events.

en

This category contains the following entity:

EntityEntity

Product

DetailsDetails

Physical objects of various categories.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

The entity in this category can have the following subcategories.

Entity subcategor yEntity subcategor y

Computing products

DetailsDetails

Computing products.

Suppor ted document languagesSuppor ted document languages

en



  Category: SkillCategory: Skill

  Category: AddressCategory: Address

  Category: PhoneNumberCategory: PhoneNumber

  Category: EmailCategory: Email

  Category: URLCategory: URL

This category contains the following entity:

EntityEntity

Skill

DetailsDetails

A capability, skill, or expertise.

Suppor ted document languagesSuppor ted document languages

en  , es , fr , de , it , pt-pt , pt-br

This category contains the following entity:

EntityEntity

Address

DetailsDetails

Full mailing address.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

This category contains the following entity:

EntityEntity

PhoneNumber

DetailsDetails

Phone numbers (US and EU phone numbers only).

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt  pt-br

This category contains the following entity:

EntityEntity

Email

DetailsDetails

Email addresses.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

This category contains the following entity:

EntityEntity



  Category: IPCategory: IP

  Category: DateTimeCategory: DateTime

  SubcategoriesSubcategories

URL

DetailsDetails

URLs to websites.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

This category contains the following entity:

EntityEntity

IP

DetailsDetails

network IP addresses.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

This category contains the following entities:

EntityEntity

DateTime

DetailsDetails

Dates and times of day.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

Entities in this category can have the following subcategories

The entity in this category can have the following subcategories.

Entity subcategor yEntity subcategor y

Date

DetailsDetails

Calender dates.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Time

Times of day.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

DateRange



  Category: QuantityCategory: Quantity

  SubcategoriesSubcategories

Date ranges.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

TimeRange

Time ranges.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Duration

Durations.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Set

Set, repeated times.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

This category contains the following entities:

EntityEntity

Quantity

DetailsDetails

Numbers and numeric quantities.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , ja , ko , pt-pt , pt-br

The entity in this category can have the following subcategories.

Entity subcategor yEntity subcategor y

Number

DetailsDetails

Numbers.

Suppor ted document languagesSuppor ted document languages

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Percentage

Percentages

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Ordinal numbers

Ordinal numbers.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Age



 Next steps

Ages.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Currency

Currencies

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Dimensions

Dimensions and measurements.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

Temperature

Temperatures.

en , es , fr , de , it , zh-hans , pt-pt , pt-br

How to use Named Entity Recognition in Text Analytics



   

 

Text offsets in the Text Analytics API output
 8/2/2021 • 2 minutes to read • Edit Online

 Offsets in the API response

 Extracting substrings from text with offsets

 Offsets in API version 3.1

 See also

Multilingual and emoji support has led to Unicode encodings that use more than one code point to represent a

single displayed character, called a grapheme. For example, emojis like _ and ` may use several characters to

compose the shape with additional characters for visual attributes, such as skin tone. Similarly, the Hindi word 

 is encoded as five letters and three combining marks.

Because of the different lengths of possible multilingual and emoji encodings, the Text Analytics API may return

offsets in the response.

Whenever offsets are returned in the API response, such as Named Entity Recognition or Sentiment Analysis,

remember:

Elements in the response may be specific to the endpoint that was called.

HTTP POST/GET payloads are encoded in UTF-8, which may or may not be the default character encoding on

your client-side compiler or operating system.

Offsets refer to grapheme counts based on the Unicode 8.0.0 standard, not character counts.

Offsets can cause problems when using character-based substring methods, for example the .NET substring()

method. One problem is that an offset may cause a substring method to end in the middle of a multi-character

grapheme encoding instead of the end.

In .NET, consider using the StringInfo class, which enables you to work with a string as a series of textual

elements, rather than individual character objects. You can also look for grapheme splitter libraries in your

preferred software environment.

The Text Analytics API returns these textual elements as well, for convenience.

In version 3.1 of the API, all Text Analytics API endpoints that return an offset will support the stringIndexType

parameter. This parameter adjusts the offset  and length  attributes in the API output to match the requested

string iteration scheme. Currently, we support three types:

1. textElement_v8  (default): iterates over graphemes as defined by the Unicode 8.0.0 standard

2. unicodeCodePoint : iterates over Unicode Code Points, the default scheme for Python 3

3. utf16CodeUnit : iterates over UTF-16 Code Units, the default scheme for JavaScript, Java, and .NET

If the stringIndexType  requested matches the programming environment of choice, substring extraction can be

done using standard substring or slice methods.

Text Analytics overview

Sentiment analysis

Entity recognition

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/concepts/text-offsets.md
https://wikipedia.org/wiki/Code_point
https://www.w3schools.com/charsets/ref_html_utf8.asp
https://unicode.org/versions/Unicode8.0.0
https://docs.microsoft.com/en-us/dotnet/api/system.string.substring
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo
https://unicode.org/versions/Unicode8.0.0
http://www.unicode.org/versions/Unicode13.0.0/ch02.pdf#G25564
https://unicode.org/faq/utf_bom.html#UTF16


Detect language

Language recognition



   

 

Data and rate limits for the Text Analytics API
 3/5/2021 • 2 minutes to read • Edit Online

 Data limits

NOTENOTE

L IM ITL IM IT VA L UEVA L UE

Maximum size of a single document 5,120 characters as measured by
StringInfo.LengthInTextElements. Also applies to Text
Analytics for health.

Maximum size of a single document ( /analyze  endpoint) 125K characters as measured by
StringInfo.LengthInTextElements. Does not apply to Text
Analytics for health.

Maximum size of entire request 1 MB. Also applies to Text Analytics for health.

 

 

F EAT UREF EAT URE M A X DO C UM EN T S P ER REQ UESTM A X DO C UM EN T S P ER REQ UEST

Language Detection 1000

 

Use this article to find the limits for the size, and rates that you can send data to Text Analytics API. Note that

pricing is not affected by the data limits or rate limits. Pricing is subject to your Text Analytics resource's pricing

details.

If you need to analyze larger documents than the limit allows, you can break the text into smaller chunks of text before

sending them to the API.

A document is a single string of text characters.

If a document exceeds the character limit, the API will behave differently depending on the endpoint you're

using:

/analyze  endpoint:

All other endpoints:

The API will reject the entire request and return a 400 bad request  error if any document within it

exceeds the maximum size.

The API won't process a document that exceeds the maximum size, and will return an invalid

document error for it. If an API request has multiple documents, the API will continue processing them

if they are within the character limit.

The maximum number of documents you can send in a single request will depend on the API version and

feature you're using, which is described in the table below.

Version 3

Version 2

The following limits are for the current v3 API. Exceeding the limits below will generate an HTTP 400 error code.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/concepts/data-limits.md
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.lengthintextelements
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.lengthintextelements


Sentiment Analysis 10

Opinion Mining 10

Key Phrase Extraction 10

Named Entity Recognition 5

Entity Linking 5

Text Analytics for health 10 for the web-based API, 1000 for the container.

Analyze endpoint 25 for all operations.

F EAT UREF EAT URE M A X DO C UM EN T S P ER REQ UESTM A X DO C UM EN T S P ER REQ UEST

 Rate limits

T IERT IER REQ UEST S P ER SEC O N DREQ UEST S P ER SEC O N D REQ UEST S P ER M IN UT EREQ UEST S P ER M IN UT E

S / Multi-service 1000 1000

S0 / F0 100 300

S1 200 300

S2 300 300

S3 500 500

S4 1000 1000

 See also

Your rate limit will vary with your pricing tier. These limits are the same for both versions of the API. These rate

limits don't apply to the Text Analytics for health container, which does not have a set rate limit.

Requests rates are measured for each Text Analytics feature separately. You can send the maximum number of

requests for your pricing tier to each feature, at the same time. For example, if you're in the S  tier and send

1000 requests at once, you wouldn't be able to send another request for 59 seconds.

What is the Text Analytics API

Pricing details

https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/


   

 

Model versioning in the Text Analytics API
 6/22/2021 • 2 minutes to read • Edit Online

 Available versions

EN DP O IN TEN DP O IN T SUP P O RT ED VERSIO N SSUP P O RT ED VERSIO N S L AT EST  VERSIO NL AT EST  VERSIO N

/sentiment 2019-10-01 , 2020-04-01 2020-04-01

/languages 2019-10-01 , 2020-07-01 , 

2020-09-01 , 2021-01-05

2021-01-05

/entities/linking 2019-10-01 , 2020-02-01 2020-02-01

/entities/recognition/general 2019-10-01 , 2020-02-01 , 

2020-04-01 , 2021-01-15 ,

2021-06-01

2021-06-01

/entities/recognition/pii 2019-10-01 , 2020-02-01 , 

2020-04-01 , 2020-07-01 , 

2021-01-15

2021-01-15

/entities/health 2021-05-15 2021-05-15

/keyphrases 2019-10-01 , 2020-07-01 , 

2021-06-01

2021-06-01

 Text Analytics for health

EN DP O IN TEN DP O IN T C O N TA IN ER IM A GE TA GC O N TA IN ER IM A GE TA G M O DEL  VERSIO NM O DEL  VERSIO N

/entities/health 3.0.016230002-onprem-amd64  or

latest

2021-05-15

/entities/health 3.0.015370001-onprem-amd64 2021-03-01

/entities/health 1.1.013530001-amd64-preview 2020-09-03

Version 3 of the Text Analytics API lets you choose the model version that gets used on your data. Use the

optional model-version  parameter to select the version of the model in your API requests. For example: 

<resource-url>/text/analytics/v3.0/sentiment?model-version=2020-04-01 . If this parameter isn't specified the API

will default to the latest stable version.

Use the table below to find which model versions are supported by each hosted endpoint.

You can find details about the updates for these models in What's new.

The Text Analytics for Health container uses separate model versioning than the above API endpoints. Please

note that only one model version is available per container image.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/concepts/model-versioning.md


/entities/health 1.1.013150001-amd64-preview 2020-07-24

/domains/health 1.1.012640001-amd64-preview 2020-05-08

/domains/health 1.1.012420001-amd64-preview 2020-05-08

/domains/health 1.1.012070001-amd64-preview 2020-04-16

EN DP O IN TEN DP O IN T C O N TA IN ER IM A GE TA GC O N TA IN ER IM A GE TA G M O DEL  VERSIO NM O DEL  VERSIO N

 Next steps
Text Analytics overview

Sentiment analysis

Entity recognition



   

 

Tutorial: Integrate Power BI with the Text Analytics
Cognitive Service

 7/8/2021 • 12 minutes to read • Edit Online

 Prerequisites

 Load customer data

NOTENOTE

Microsoft Power BI Desktop is a free application that lets you connect to, transform, and visualize your data. The

Text Analytics service, part of Microsoft Azure Cognitive Services, provides natural language processing. Given

raw unstructured text, it can extract the most important phrases, analyze sentiment, and identify well-known

entities such as brands. Together, these tools can help you quickly see what your customers are talking about

and how they feel about it.

In this tutorial, you'll learn how to:

Use Power BI Desktop to import and transform data

Create a custom function in Power BI Desktop

Integrate Power BI Desktop with the Text Analytics Key Phrases API

Use the Text Analytics Key Phrases API to extract the most important phrases from customer feedback

Create a word cloud from customer feedback

 

Microsoft Power BI Desktop. Download at no charge.

A Microsoft Azure account. Create a free account or sign in.

A Cognitive Services API account with the Text Analytics API. If you don't have one, you can sign up and use

the free tier for 5,000 transactions/month (see pricing details to complete this tutorial.

The Text Analytics access key that was generated for you during sign-up.

Customer comments. You can use our example data or your own data. This tutorial assumes you're using our

example data.

 

To get started, open Power BI Desktop and load the comma-separated value (CSV) file FabrikamComments.csv

that you downloaded in Prerequisites. This file represents a day's worth of hypothetical activity in a fictional

small company's support forum.

Power BI can use data from a wide variety of web-based sources, such as SQL databases. See the Power Query

documentation for more information.

In the main Power BI Desktop window, select the HomeHome ribbon. In the External dataExternal data group of the ribbon, open

the Get DataGet Data drop-down menu and select Text/CSVText/CSV.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/tutorials/tutorial-power-bi-key-phrases.md
https://powerbi.microsoft.com/get-started/
https://azure.microsoft.com/free/cognitive-services/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://aka.ms/cogsvc/ta
https://docs.microsoft.com/en-us/power-query/connectors/


The Open dialog appears. Navigate to your Downloads folder, or to the folder where you downloaded the 

FabrikamComments.csv  file. Click FabrikamComments.csv , then the OpenOpen button. The CSV import dialog appears.

The CSV import dialog lets you verify that Power BI Desktop has correctly detected the character set, delimiter,

header rows, and column types. This information is all correct, so click LoadLoad.

To see the loaded data, click the Data ViewData View  button on the left edge of the Power BI workspace. A table opens

that contains the data, like in Microsoft Excel.



 Prepare the data
 

You may need to transform your data in Power BI Desktop before it's ready to be processed by the Key Phrases

API of the Text Analytics service.

The sample data contains a subject  column and a comment  column. With the Merge Columns function in

Power BI Desktop, you can extract key phrases from the data in both these columns, rather than just the 

comment  column.

In Power BI Desktop, select the HomeHome ribbon. In the External dataExternal data group, click Edit QueriesEdit Queries .

Select FabrikamComments  in the QueriesQueries  list at the left side of the window if it isn't already selected.

Now select both the subject  and comment  columns in the table. You may need to scroll horizontally to see

these columns. First click the subject  column header, then hold down the Control key and click the comment

column header.

Select the TransformTransform ribbon. In the Text ColumnsText Columns group of the ribbon, click Merge ColumnsMerge Columns . The Merge

Columns dialog appears.



 Understand the API

F IEL DF IEL D DESC RIP T IO NDESC RIP T IO N

id A unique identifier for this document within the request. The
response also contains this field. That way, if you process
more than one document, you can easily associate the
extracted key phrases with the document they came from. In
this tutorial, because you're processing only one document
per request, you can hard-code the value of id  to be the

same for each request.

text The text to be processed. The value of this field comes from
the Merged  column you created in the previous section,

which contains the combined subject line and comment text.
The Key Phrases API requires this data be no longer than
about 5,120 characters.

language The code for the natural language the document is written
in. All the messages in the sample data are in English, so you
can hard-code the value en  for this field.

 Create a custom function

In the Merge Columns dialog, choose Tab  as the separator, then click OK.OK.

You might also consider filtering out blank messages using the Remove Empty filter, or removing unprintable

characters using the Clean transformation. If your data contains a column like the spamscore  column in the

sample file, you can skip "spam" comments using a Number Filter.

 

The Key Phrases API of the Text Analytics service can process up to a thousand text documents per HTTP request.

Power BI prefers to deal with records one at a time, so in this tutorial your calls to the API will include only a

single document each. The Key Phrases API requires the following fields for each document being processed.

 

Now you're ready to create the custom function that will integrate Power BI and Text Analytics. The function

receives the text to be processed as a parameter. It converts data to and from the required JSON format and

makes the HTTP request to the Key Phrases API. The function then parses the response from the API and returns

a string that contains a comma-separated list of the extracted key phrases.

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-V3-1/operations/KeyPhrases


NOTENOTE

NOTENOTE

// Returns key phrases from the text in a comma-separated list
(text) => let
    apikey      = "YOUR_API_KEY_HERE",
    endpoint    = "https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics" & 
"/v3.0/keyPhrases",
    jsontext    = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),
    jsonbody    = "{ documents: [ { language: ""en"", id: ""0"", text: " & jsontext & " } ] }",
    bytesbody   = Text.ToBinary(jsonbody),
    headers     = [#"Ocp-Apim-Subscription-Key" = apikey],
    bytesresp   = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),
    jsonresp    = Json.Document(bytesresp),
    keyphrases  = Text.Lower(Text.Combine(jsonresp[documents]{0}[keyPhrases], ", "))
in  keyphrases

 Use the custom function

Power BI Desktop custom functions are written in the Power Query M formula language, or just "M" for short. M is a

functional programming language based on F#. You don't need to be a programmer to finish this tutorial, though; the

required code is included below.

In Power BI Desktop, make sure you're still in the Query Editor window. If you aren't, select the HomeHome ribbon,

and in the External dataExternal data group, click Edit QueriesEdit Queries .

Now, in the HomeHome ribbon, in the New Quer yNew Quer y  group, open the New SourceNew Source drop-down menu and select BlankBlank

Quer yQuer y .

A new query, initially named Query1 , appears in the Queries list. Double-click this entry and name it 

KeyPhrases .

Now, in the HomeHome ribbon, in the Quer yQuer y  group, click Advanced EditorAdvanced Editor  to open the Advanced Editor window.

Delete the code that's already in that window and paste in the following code.

Replace the example endpoint below (containing <your-custom-subdomain> ) with the endpoint generated for your Text

Analytics resource. You can find this endpoint by signing in to the Azure portal, selecting your Text Analytics subscription,

and selecting Quick start .

Replace YOUR_API_KEY_HERE  with your Text Analytics access key. You can also find this key by signing in to the

Azure portal, selecting your Text Analytics subscription, and selecting the Overview page. Be sure to leave the

quotation marks before and after the key. Then click Done.Done.

 

Now you can use the custom function to extract the key phrases from each of the customer comments and store

them in a new column in the table.

In Power BI Desktop, in the Query Editor window, switch back to the FabrikamComments  query. Select the AddAdd

ColumnColumn ribbon. In the GeneralGeneral  group, click Invoke Custom FunctionInvoke Custom Function.

https://docs.microsoft.com/en-us/powerquery-m/power-query-m-reference
https://docs.microsoft.com/en-us/dotnet/fsharp/
https://azure.microsoft.com/features/azure-portal/
https://azure.microsoft.com/features/azure-portal/


 Authentication and privacy

NOTENOTE

The Invoke Custom Function dialog appears. In New column nameNew column name, enter keyphrases . In Function quer yFunction quer y ,

select the custom function you created, KeyPhrases .

A new field appears in the dialog, text (optional)text (optional) . This field is asking which column we want to use to provide

values for the text  parameter of the Key Phrases API. (Remember that you already hard-coded the values for

the language  and id  parameters.) Select Merged  (the column you created previously by merging the subject

and message fields) from the drop-down menu.

Finally, click OK.OK.

If everything is ready, Power BI calls your custom function once for each row in the table. It sends the queries to

the Key Phrases API and adds a new column to the table to store the results. But before that happens, you may

need to specify authentication and privacy settings.

 

After you close the Invoke Custom Function dialog, a banner may appear asking you to specify how to connect

to the Key Phrases API.

Click Edit Credentials,Edit Credentials, make sure Anonymous  is selected in the dialog, then click Connect.Connect.

You select Anonymous  because the Text Analytics service authenticates you using your access key, so Power BI does not

need to provide credentials for the HTTP request itself.



 Create the word cloud

NOTENOTE

If you see the Edit Credentials banner even after choosing anonymous access, you may have forgotten to paste

your Text Analytics access key into the code in the KeyPhrases  custom function.

Next, a banner may appear asking you to provide information about your data sources' privacy.

Click ContinueContinue and choose Public  for each of the data sources in the dialog. Then click Save.Save.

 

Once you have dealt with any banners that appear, click Close & ApplyClose & Apply  in the Home ribbon to close the Query

Editor.

Power BI Desktop takes a moment to make the necessary HTTP requests. For each row in the table, the new 

keyphrases  column contains the key phrases detected in the text by the Key Phrases API.

Now you'll use this column to generate a word cloud. To get started, click the Repor tRepor t button in the main Power

BI Desktop window, to the left of the workspace.

Why use extracted key phrases to generate a word cloud, rather than the full text of every comment? The key phrases

provide us with the important words from our customer comments, not just the most common words. Also, word sizing

in the resulting cloud isn't skewed by the frequent use of a word in a relatively small number of comments.

If you don't already have the Word Cloud custom visual installed, install it. In the Visualizations panel to the right

of the workspace, click the three dots (......) and choose Impor t From MarketImpor t From Market. If the word "cloud" is not among

the displayed visualization tools in the list, you can search for "cloud" and click the AddAdd button next the Word

Cloud visual. Power BI installs the Word Cloud visual and lets you know that it installed successfully.



First, click the Word Cloud icon in the Visualizations panel.

A new report appears in the workspace. Drag the keyphrases  field from the Fields panel to the Category field in

the Visualizations panel. The word cloud appears inside the report.

Now switch to the Format page of the Visualizations panel. In the Stop Words category, turn on Default StopDefault Stop

WordsWords  to eliminate short, common words like "of" from the cloud. However, because we're visualizing key

phrases, they might not contain stop words.

Down a little further in this panel, turn off Rotate TextRotate Text and TitleTitle.



 More Text Analytics services

// Returns the sentiment label of the text, for example, positive, negative or mixed.
(text) => let
    apikey = "YOUR_API_KEY_HERE",
    endpoint = "<your-custom-subdomain>.cognitiveservices.azure.com" & "/text/analytics/v3.1/sentiment",
    jsontext = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),
    jsonbody = "{ documents: [ { language: ""en"", id: ""0"", text: " & jsontext & " } ] }",
    bytesbody = Text.ToBinary(jsonbody),
    headers = [#"Ocp-Apim-Subscription-Key" = apikey],
    bytesresp = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),
    jsonresp = Json.Document(bytesresp),
    sentiment   = jsonresp[documents]{0}[sentiment] 
    in sentiment

Click the Focus Mode tool in the report to get a better look at our word cloud. The tool expands the word cloud

to fill the entire workspace, as shown below.

 

The Text Analytics service, one of the Cognitive Services offered by Microsoft Azure, also provides sentiment

analysis and language detection. The language detection in particular is useful if your customer feedback isn't all

in English.

Both of these other APIs are similar to the Key Phrases API. That means you can integrate them with Power BI

Desktop using custom functions that are nearly identical to the one you created in this tutorial. Just create a

blank query and paste the appropriate code below into the Advanced Editor, as you did earlier. (Don't forget your

access key!) Then, as before, use the function to add a new column to the table.

The Sentiment Analysis function below returns a label indicating how positive the sentiment expressed in the

text is.



// Returns the two-letter language code (for example, 'en' for English) of the text
(text) => let
    apikey      = "YOUR_API_KEY_HERE",
    endpoint    = "https://<your-custom-subdomain>.cognitiveservices.azure.com" & 
"/text/analytics/v3.1/languages",
    jsontext    = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),
    jsonbody    = "{ documents: [ { id: ""0"", text: " & jsontext & " } ] }",
    bytesbody   = Text.ToBinary(jsonbody),
    headers     = [#"Ocp-Apim-Subscription-Key" = apikey],
    bytesresp   = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),
    jsonresp    = Json.Document(bytesresp),
    language    = jsonresp [documents]{0}[detectedLanguage] [iso6391Name] in language 

// Returns the name (for example, 'English') of the language in which the text is written
(text) => let
    apikey      = "YOUR_API_KEY_HERE",
    endpoint    = "https://<your-custom-subdomain>.cognitiveservices.azure.com" & 
"/text/analytics/v3.1/languages",
    jsontext    = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),
    jsonbody    = "{ documents: [ { id: ""0"", text: " & jsontext & " } ] }",
    bytesbody   = Text.ToBinary(jsonbody),
    headers     = [#"Ocp-Apim-Subscription-Key" = apikey],
    bytesresp   = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),
    jsonresp    = Json.Document(bytesresp),
    language    jsonresp [documents]{0}[detectedLanguage] [iso6391Name] in language 

NOTENOTE

// Returns key phrases from the text as a list object
(text) => let
    apikey      = "YOUR_API_KEY_HERE",
    endpoint    = "https://<your-custom-subdomain>.cognitiveservices.azure.com" & 
"/text/analytics/v3.1/keyPhrases",
    jsontext    = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),
    jsonbody    = "{ documents: [ { language: ""en"", id: ""0"", text: " & jsontext & " } ] }",
    bytesbody   = Text.ToBinary(jsonbody),
    headers     = [#"Ocp-Apim-Subscription-Key" = apikey],
    bytesresp   = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),
    jsonresp    = Json.Document(bytesresp),
    keyphrases  = jsonresp[documents]{0}[keyPhrases]
in  keyphrases

 Next steps

Here are two versions of a Language Detection function. The first returns the ISO language code (for example, 

en  for English), while the second returns the "friendly" name (for example, English ). You may notice that only

the last line of the body differs between the two versions.

Finally, here's a variant of the Key Phrases function already presented that returns the phrases as a list object,

rather than as a single string of comma-separated phrases.

Returning a single string simplified our word cloud example. A list, on the other hand, is a more flexible format for working

with the returned phrases in Power BI. You can manipulate list objects in Power BI Desktop using the Structured Column

group in the Query Editor's Transform ribbon.

 

Learn more about the Text Analytics service, the Power Query M formula language, or Power BI.



Text Analytics API reference

Power Query M reference

Power BI documentation

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1
https://docs.microsoft.com/en-us/powerquery-m/power-query-m-reference
https://powerbi.microsoft.com/documentation/powerbi-landing-page/


   

 

Tutorial: Build a Flask app with Azure Cognitive
Services

 3/24/2021 • 24 minutes to read • Edit Online

TIPTIP

 What is Flask?

 Prerequisites

 Create an account and subscribe to resources

In this tutorial, you'll build a Flask web app that uses Azure Cognitive Services to translate text, analyze

sentiment, and synthesize translated text into speech. Our focus is on the Python code and Flask routes that

enable our application, however, we will help you out with the HTML and JavaScript that pulls the app together. If

you run into any issues let us know using the feedback button below.

Here's what this tutorial covers:

Get Azure subscription keys

Set up your development environment and install dependencies

Create a Flask app

Use the Translator to translate text

Use Text Analytics to analyze positive/negative sentiment of input text and translations

Use Speech Services to convert translated text into synthesized speech

Run your Flask app locally

If you'd like to skip ahead and see all the code at once, the entire sample, along with build instructions are available on

GitHub.

Flask is a microframework for creating web applications. This means Flask provides you with tools, libraries, and

technologies that allow you to build a web application. This web application can be some web pages, a blog, a

wiki or go as substantive as a web-based calendar application or a commercial website.

For those of you who want to deep dive after this tutorial here are a few helpful links:

Flask documentation

Flask for Dummies - A Beginner's Guide to Flask

Let's review the software and subscription keys that you'll need for this tutorial.

Python 3.6 or later

Git tools

An IDE or text editor, such as Visual Studio Code or Atom

Chrome or Firefox

A TranslatorTranslator  subscription key (you can likely use the globalglobal  location.)

A Text AnalyticsText Analytics  subscription key in the West USWest US  region.

A Speech Ser vicesSpeech Ser vices  subscription key in the West USWest US  region.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/Translator/tutorial-build-flask-app-translation-synthesis.md
https://github.com/MicrosoftTranslator/Text-Translation-API-V3-Flask-App-Tutorial
http://flask.pocoo.org/
https://codeburst.io/flask-for-dummies-a-beginners-guide-to-flask-part-uno-53aec6afc5b1
https://www.python.org/downloads/
https://git-scm.com/downloads
https://code.visualstudio.com/
https://atom.io/
https://www.google.com/chrome/browser/
https://www.mozilla.org/firefox


IMPORTANTIMPORTANT

 Set up your dev environment

  Create a working directoryCreate a working directory

  Create and activate your virtual environment with Create and activate your virtual environment with virtualenv

As previously mentioned, you're going to need three subscription keys for this tutorial. This means that you

need to create a resource within your Azure account for :

Translator

Text Analytics

Speech Services

Use Create a Cognitive Services Account in the Azure portal for step-by-step instructions to create resources.

For this tutorial, please create your resources in the West US region. If using a different region, you'll need to adjust the

base URL in each of your Python files.

Before you build your Flask web app, you'll need to create a working directory for your project and install a few

Python packages.

mkdir -p flask-cog-services/static/scripts && mkdir flask-cog-services/templates

cd flask-cog-services

1. Open command line (Windows) or terminal (macOS/Linux). Then, create a working directory and sub

directories for your project:

2. Change to your project's working directory:

Let's create a virtual environment for our Flask app using virtualenv . Using a virtual environment ensures that

you have a clean environment to work from.

virtualenv venv --python=python3

virtualenv venv

P L AT F O RMP L AT F O RM SH EL LSH EL L C O M M A N DC O M M A N D

macOS/Linux bash/zsh source venv/bin/activate

1. In your working directory, run this command to create a virtual environment: macOS/Linux:macOS/Linux:

We've explicitly declared that the virtual environment should use Python 3. This ensures that users with

multiple Python installations are using the correct version.

Windows CMD / Windows Bash:Windows CMD / Windows Bash:

To keep things simple, we're naming your virtual environment venv.

2. The commands to activate your virtual environment will vary depending on your platform/shell:

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account


NOTENOTE

  Install requestsInstall requests

NOTENOTE

  Install and configure FlaskInstall and configure Flask

Windows bash source venv/Scripts/activate

Command Line venv\Scripts\activate.bat

PowerShell venv\Scripts\Activate.ps1

P L AT F O RMP L AT F O RM SH EL LSH EL L C O M M A N DC O M M A N D

After running this command, your command line or terminal session should be prefaced with venv .

3. You can deactivate the session at any time by typing this into the command line or terminal: deactivate .

Python has extensive documentation for creating and managing virtual environments, see virtualenv.

Requests is a popular module that is used to send HTTP 1.1 requests. There's no need to manually add query

strings to your URLs, or to form-encode your POST data.

pip install requests

1. To install requests, run:

If you'd like to learn more about requests, see Requests: HTTP for Humans.

Next we need to install Flask. Flask handles the routing for our web app, and allows us to make server-to-server

calls that hide our subscription keys from the end user.

pip install Flask

flask --version

export FLASK_APP=app.py

1. To install Flask, run:

Let's make sure Flask was installed. Run:

The version should be printed to terminal. Anything else means something went wrong.

2. To run the Flask app, you can either use the flask command or Python's -m switch with Flask. Before you

can do that you need to tell your terminal which app to work with by exporting the FLASK_APP

environment variable:

macOS/LinuxmacOS/Linux:

WindowsWindows :

https://virtualenv.pypa.io/en/latest/
https://2.python-requests.org/en/master/


 Create your Flask app

  What is a Flask route?What is a Flask route?

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/about')
def about():
    return render_template('about.html')

  Get startedGet started

set FLASK_APP=app.py

In this section, you're going to create a barebones Flask app that returns an HTML file when users hit the root of

your app. Don't spend too much time trying to pick apart the code, we'll come back to update this file later.

Let's take a minute to talk about "routes". Routing is used to bind a URL to a specific function. Flask uses route

decorators to register functions to specific URLs. For example, when a user navigates to the root ( / ) of our web

app, index.html  is rendered.

Let's take a look at one more example to hammer this home.

This code ensures that when a user navigates to http://your-web-app.com/about  that the about.html  file is

rendered.

While these samples illustrate how to render html pages for a user, routes can also be used to call APIs when a

button is pressed, or take any number of actions without having to navigate away from the homepage. You'll see

this in action when you create routes for translation, sentiment, and speech synthesis.

from flask import Flask, render_template, url_for, jsonify, request

app = Flask(__name__)
app.config['JSON_AS_ASCII'] = False

@app.route('/')
def index():
    return render_template('index.html')

1. Open the project in your IDE, then create a file named app.py  in the root of your working directory. Next,

copy this code into app.py  and save:

This code block tells the app to display index.html  whenever a user navigates to the root of your web

app ( / ).

2. Next, let's create the front-end for our web app. Create a file named index.html  in the templates

directory. Then copy this code into templates/index.html .

http://flask.pocoo.org/docs/1.0/api/#flask.Flask.route


 Translate text

  Call the TranslatorCall the Translator

<!doctype html>
<html lang="en">
  <head>
    <!-- Required metadata tags -->
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
    <meta name="description" content="Translate and analyze text with Azure Cognitive Services.">
    <!-- Bootstrap CSS -->
    <link rel="stylesheet" 
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-
Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
    <title>Translate and analyze text with Azure Cognitive Services</title>
  </head>
  <body>
    <div class="container">
      <h1>Translate, synthesize, and analyze text with Azure</h1>
      <p>This simple web app uses Azure for text translation, text-to-speech conversion, and 
sentiment analysis of input text and translations. Learn more about <a 
href="https://docs.microsoft.com/azure/cognitive-services/">Azure Cognitive Services</a>.
     </p>
     <!-- HTML provided in the following sections goes here. -->

     <!-- End -->
    </div>

    <!-- Required Javascript for this tutorial -->
    <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-
KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script>
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min.js" 
integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q" 
crossorigin="anonymous"></script>
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js" 
integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl" 
crossorigin="anonymous"></script>
    <script type = "text/javascript" src ="static/scripts/main.js"></script>
  </body>
</html>

flask run

3. Let's test the Flask app. From the terminal, run:

4. Open a browser and navigate to the URL provided. You should see your single page app. Press Ctr l + CCtr l + C

to kill the app.

Now that you have an idea of how a simple Flask app works, let's:

Write some Python to call the Translator and return a response

Create a Flask route to call your Python code

Update the HTML with an area for text input and translation, a language selector, and translate button

Write JavaScript that allows users to interact with your Flask app from the HTML

The first thing you need to do is write a function to call the Translator. This function will take two arguments: 

text_input  and language_output . This function is called whenever a user presses the translate button in your

app. The text area in the HTML is sent as the text_input , and the language selection value in the HTML is sent

as language_output .



  Add a route to Add a route to app.py

1. Let's start by creating a file called translate.py  in the root of your working directory.

2. Next, add this code to translate.py . This function takes two arguments: text_input  and language_output .

import os, requests, uuid, json

# Don't forget to replace with your Cog Services subscription key!
# If you prefer to use environment variables, see Extra Credit for more info.
subscription_key = 'YOUR_TRANSLATOR_TEXT_SUBSCRIPTION_KEY'
location = 'YOUR_TRANSLATOR_RESOURCE_LOCATION'
# Don't forget to replace with your Cog Services location!
# Our Flask route will supply two arguments: text_input and language_output.
# When the translate text button is pressed in our Flask app, the Ajax request
# will grab these values from our web app, and use them in the request.
# See main.js for Ajax calls.
def get_translation(text_input, language_output):
    base_url = 'https://api.cognitive.microsofttranslator.com'
    path = '/translate?api-version=3.0'
    params = '&to=' + language_output
    constructed_url = base_url + path + params

    headers = {
        'Ocp-Apim-Subscription-Key': subscription_key,
        'Ocp-Apim-Subscription-Region': location,
        'Content-type': 'application/json',
        'X-ClientTraceId': str(uuid.uuid4())
    }

    # You can pass more than one object in body.
    body = [{
        'text' : text_input
    }]
    response = requests.post(constructed_url, headers=headers, json=body)
    return response.json()

3. Add your Translator subscription key and save.

Next, you'll need to create a route in your Flask app that calls translate.py . This route will be called each time a

user presses the translate button in your app.

For this app, your route is going to accept POST  requests. This is because the function expects the text to

translate and an output language for the translation.

Flask provides helper functions to help you parse and manage each request. In the code provided, get_json()

returns the data from the POST  request as JSON. Then using data['text']  and data['to'] , the text and output

language values are passed to get_translation()  function available from translate.py . The last step is to

return the response as JSON, since you'll need to display this data in your web app.

In the following sections, you'll repeat this process as you create routes for sentiment analysis and speech

synthesis.

import translate

1. Open app.py  and locate the import statement at the top of app.py  and add the following line:

Now our Flask app can use the method available via translate.py .

2. Copy this code to the end of app.py  and save:



  Update Update index.html

@app.route('/translate-text', methods=['POST'])
def translate_text():
    data = request.get_json()
    text_input = data['text']
    translation_output = data['to']
    response = translate.get_translation(text_input, translation_output)
    return jsonify(response)

Now that you have a function to translate text, and a route in your Flask app to call it, the next step is to start

building the HTML for your app. The HTML below does a few things:

Provides a text area where users can input text to translate.

Includes a language selector.

Includes HTML elements to render the detected language and confidence scores returned during translation.

Provides a read-only text area where the translation output is displayed.

Includes placeholders for sentiment analysis and speech synthesis code that you'll add to this file later in the

tutorial.

Let's update index.html .

<!-- HTML provided in the following sections goes here. -->

<!-- End -->

<div class="row">
  <div class="col">
    <form>
      <!-- Enter text to translate. -->
      <div class="form-group">
        <label for="text-to-translate"><strong>Enter the text you'd like to translate:</strong>
</label>
        <textarea class="form-control" id="text-to-translate" rows="5"></textarea>
      </div>
      <!-- Select output language. -->
      <div class="form-group">
        <label for="select-language"><strong>Translate to:</strong></label>
        <select class="form-control" id="select-language">
          <option value="ar">Arabic</option>
          <option value="ca">Catalan</option>
          <option value="zh-Hans">Chinese (Simplified)</option>
          <option value="zh-Hant">Chinese (Traditional)</option>
          <option value="hr">Croatian</option>
          <option value="en">English</option>
          <option value="fr">French</option>
          <option value="de">German</option>
          <option value="el">Greek</option>
          <option value="he">Hebrew</option>
          <option value="hi">Hindi</option>
          <option value="it">Italian</option>
          <option value="ja">Japanese</option>
          <option value="ko">Korean</option>
          <option value="pt">Portuguese</option>
          <option value="ru">Russian</option>
          <option value="es">Spanish</option>
          <option value="th">Thai</option>
          <option value="tr">Turkish</option>

1. Open index.html  and locate these code comments:

2. Replace the code comments with this HTML block:



  Create Create main.js

          <option value="tr">Turkish</option>
          <option value="vi">Vietnamese</option>
        </select>
      </div>
      <button type="submit" class="btn btn-primary mb-2" id="translate">Translate text</button></br>
      <div id="detected-language" style="display: none">
        <strong>Detected language:</strong> <span id="detected-language-result"></span><br />
        <strong>Detection confidence:</strong> <span id="confidence"></span><br /><br />
      </div>

      <!-- Start sentiment code-->

      <!-- End sentiment code -->

    </form>
  </div>
  <div class="col">
    <!-- Translated text returned by the Translate API is rendered here. -->
    <form>
      <div class="form-group" id="translator-text-response">
        <label for="translation-result"><strong>Translated text:</strong></label>
        <textarea readonly class="form-control" id="translation-result" rows="5"></textarea>
      </div>

      <!-- Start voice font selection code -->

      <!-- End voice font selection code -->

    </form>

    <!-- Add Speech Synthesis button and audio element -->

    <!-- End Speech Synthesis button -->

  </div>
</div>

The next step is to write some JavaScript. This is the bridge between your HTML and Flask route.

The main.js  file is the bridge between your HTML and Flask route. Your app will use a combination of jQuery,

Ajax, and XMLHttpRequest to render content, and make POST  requests to your Flask routes.

In the code below, content from the HTML is used to construct a request to your Flask route. Specifically, the

contents of the text area and the language selector are assigned to variables, and then passed along in the

request to translate-text .

The code then iterates through the response, and updates the HTML with the translation, detected language, and

confidence score.

1. From your IDE, create a file named main.js  in the static/scripts  directory.

2. Copy this code into static/scripts/main.js :



  Test translationTest translation

flask run

TIPTIP

 Analyze sentiment

//Initiate jQuery on load.
$(function() {
  //Translate text with flask route
  $("#translate").on("click", function(e) {
    e.preventDefault();
    var translateVal = document.getElementById("text-to-translate").value;
    var languageVal = document.getElementById("select-language").value;
    var translateRequest = { 'text': translateVal, 'to': languageVal }

    if (translateVal !== "") {
      $.ajax({
        url: '/translate-text',
        method: 'POST',
        headers: {
            'Content-Type':'application/json'
        },
        dataType: 'json',
        data: JSON.stringify(translateRequest),
        success: function(data) {
          for (var i = 0; i < data.length; i++) {
            document.getElementById("translation-result").textContent = data[i].translations[0].text;
            document.getElementById("detected-language-result").textContent = 
data[i].detectedLanguage.language;
            if (document.getElementById("detected-language-result").textContent !== ""){
              document.getElementById("detected-language").style.display = "block";
            }
            document.getElementById("confidence").textContent = data[i].detectedLanguage.score;
          }
        }
      });
    };
  });
  // In the following sections, you'll add code for sentiment analysis and
  // speech synthesis here.
})

Let's test translation in the app.

Navigate to the provided server address. Type text into the input area, select a language, and press translate. You

should get a translation. If it doesn't work, make sure that you've added your subscription key.

If the changes you've made aren't showing up, or the app doesn't work the way you expect it to, try clearing your cache

or opening a private/incognito window.

Press CTRL + cCTRL + c to kill the app, then head to the next section.

The Text Analytics API can be used to perform sentiment analysis, extract key phrases from text, or detect the

source language. In this app, we're going to use sentiment analysis to determine if the provided text is positive,

neutral, or negative. The API returns a numeric score between 0 and 1. Scores close to 1 indicate positive

sentiment, and scores close to 0 indicate negative sentiment.

In this section, you're going to do a few things:



  Call the Text Analytics APICall the Text Analytics API

  Add a route to Add a route to app.py

Write some Python to call the Text Analytics API to perform sentiment analysis and return a response

Create a Flask route to call your Python code

Update the HTML with an area for sentiment scores, and a button to perform analysis

Write JavaScript that allows users to interact with your Flask app from the HTML

Let's write a function to call the Text Analytics API. This function will take four arguments: input_text , 

input_language , output_text , and output_language . This function is called whenever a user presses the run

sentiment analysis button in your app. Data provided by the user from the text area and language selector, as

well as the detected language and translation output are provided with each request. The response object

includes sentiment scores for the source and translation. In the following sections, you're going to write some

JavaScript to parse the response and use it in your app. For now, let's focus on call the Text Analytics API.

1. Let's create a file called sentiment.py  in the root of your working directory.

2. Next, add this code to sentiment.py .

import os, requests, uuid, json

# Don't forget to replace with your Cog Services subscription key!
subscription_key = 'YOUR_TEXT_ANALYTICS_SUBSCRIPTION_KEY'
endpoint = "YOUR_TEXT_ANALYTICS_ENDPOINT" 
# Our Flask route will supply four arguments: input_text, input_language,
# output_text, output_language.
# When the run sentiment analysis button is pressed in our Flask app,
# the Ajax request will grab these values from our web app, and use them
# in the request. See main.js for Ajax calls.

def get_sentiment(input_text, input_language):
    path = '/text/analytics/v3.0/sentiment'
    constructed_url = endpoint + path

    headers = {
        'Ocp-Apim-Subscription-Key': subscription_key,
        'Content-type': 'application/json',
        'X-ClientTraceId': str(uuid.uuid4())
    }

    # You can pass more than one object in body.
    body = {
        'documents': [
            {
                'language': input_language,
                'id': '1',
                'text': input_text
            },
        ]
    }
    response = requests.post(constructed_url, headers=headers, json=body)
    return response.json()

3. Add your Text Analytics subscription key and save.

Let's create a route in your Flask app that calls sentiment.py . This route will be called each time a user presses

the run sentiment analysis button in your app. Like the route for translation, this route is going to accept POST

requests since the function expects arguments.

1. Open app.py  and locate the import statement at the top of app.py  and update it:



  Update Update index.html

  Update Update main.js

import translate, sentiment

@app.route('/sentiment-analysis', methods=['POST'])
def sentiment_analysis():
    data = request.get_json()
    input_text = data['inputText']
    input_lang = data['inputLanguage']
    response = sentiment.get_sentiment(input_text, input_lang)
    return jsonify(response)

Now our Flask app can use the method available via sentiment.py .

2. Copy this code to the end of app.py  and save:

Now that you have a function to run sentiment analysis, and a route in your Flask app to call it, the next step is

to start writing the HTML for your app. The HTML below does a few things:

Adds a button to your app to run sentiment analysis

Adds an element that explains sentiment scoring

Adds an element to display the sentiment scores

<!-- Start sentiment code-->

<!-- End sentiment code -->

<button type="submit" class="btn btn-primary mb-2" id="sentiment-analysis">Run sentiment 
analysis</button></br>
<div id="sentiment" style="display: none">
   <p>Sentiment can be labeled as "positive", "negative", "neutral", or "mixed". </p>
   <strong>Sentiment label for input:</strong> <span id="input-sentiment"></span><br />
</div>

1. Open index.html  and locate these code comments:

2. Replace the code comments with this HTML block:

In the code below, content from the HTML is used to construct a request to your Flask route. Specifically, the

contents of the text area and the language selector are assigned to variables, and then passed along in the

request to the sentiment-analysis  route.

The code then iterates through the response, and updates the HTML with the sentiment scores.

1. From your IDE, create a file named main.js  in the static  directory.

2. Copy this code into static/scripts/main.js :



  Test sentiment analysisTest sentiment analysis

flask run

TIPTIP

 Convert text-to-speech

//Run sentiment analysis on input and translation.
$("#sentiment-analysis").on("click", function(e) {
  e.preventDefault();
  var inputText = document.getElementById("text-to-translate").value;
  var inputLanguage = document.getElementById("detected-language-result").innerHTML;
  var outputText = document.getElementById("translation-result").value;
  var outputLanguage = document.getElementById("select-language").value;

  var sentimentRequest = { "inputText": inputText, "inputLanguage": inputLanguage};

  if (inputText !== "") {
    $.ajax({
      url: "/sentiment-analysis",
      method: "POST",
      headers: {
          "Content-Type":"application/json"
      },
      dataType: "json",
      data: JSON.stringify(sentimentRequest),
      success: function(data) {
        for (var i = 0; i < data.documents.length; i++) {
          if (typeof data.documents[i] !== "undefined"){
            if (data.documents[i].id === "1") {
              document.getElementById("input-sentiment").textContent = data.documents[i].sentiment;
            }
          }
        }
        for (var i = 0; i < data.errors.length; i++) {
          if (typeof data.errors[i] !== "undefined"){
            if (data.errors[i].id === "1") {
              document.getElementById("input-sentiment").textContent = data.errors[i].message;
            }
          }
        }
        if (document.getElementById("input-sentiment").textContent !== ''){
          document.getElementById("sentiment").style.display = "block";
        }
      }
    });
  }
});
// In the next section, you'll add code for speech synthesis here.

Let's test sentiment analysis in the app.

Navigate to the provided server address. Type text into the input area, select a language, and press translate. You

should get a translation. Next, press the run sentiment analysis button. You should see two scores. If it doesn't

work, make sure that you've added your subscription key.

If the changes you've made aren't showing up, or the app doesn't work the way you expect it to, try clearing your cache

or opening a private/incognito window.

Press CTRL + cCTRL + c to kill the app, then head to the next section.



  Call the Text-to-Speech APICall the Text-to-Speech API

The Text-to-speech API enables your app to convert text into natural human-like synthesized speech. The service

supports standard, neural, and custom voices. Our sample app uses a handful of the available voices, for a full

list, see supported languages.

In this section, you're going to do a few things:

Write some Python to convert text-to-speech with the Text-to-speech API

Create a Flask route to call your Python code

Update the HTML with a button to convert text-to-speech, and an element for audio playback

Write JavaScript that allows users to interact with your Flask app

Let's write a function to convert text-to-speech. This function will take two arguments: input_text  and 

voice_font . This function is called whenever a user presses the convert text-to-speech button in your app. 

input_text  is the translation output returned by the call to translate text, voice_font  is the value from the voice

font selector in the HTML.

1. Let's create a file called synthesize.py  in the root of your working directory.

2. Next, add this code to synthesize.py .

https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/text-to-speech
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support


  Add a route to Add a route to app.py

import os, requests, time
from xml.etree import ElementTree

class TextToSpeech(object):
    def __init__(self, input_text, voice_font):
        subscription_key = 'YOUR_SPEECH_SERVICES_SUBSCRIPTION_KEY'
        self.subscription_key = subscription_key
        self.input_text = input_text
        self.voice_font = voice_font
        self.timestr = time.strftime('%Y%m%d-%H%M')
        self.access_token = None

    # This function performs the token exchange.
    def get_token(self):
        fetch_token_url = 'https://westus.api.cognitive.microsoft.com/sts/v1.0/issueToken'
        headers = {
            'Ocp-Apim-Subscription-Key': self.subscription_key
        }
        response = requests.post(fetch_token_url, headers=headers)
        self.access_token = str(response.text)

    # This function calls the TTS endpoint with the access token.
    def save_audio(self):
        base_url = 'https://westus.tts.speech.microsoft.com/'
        path = 'cognitiveservices/v1'
        constructed_url = base_url + path
        headers = {
            'Authorization': 'Bearer ' + self.access_token,
            'Content-Type': 'application/ssml+xml',
            'X-Microsoft-OutputFormat': 'riff-24khz-16bit-mono-pcm',
            'User-Agent': 'YOUR_RESOURCE_NAME',
        }
        # Build the SSML request with ElementTree
        xml_body = ElementTree.Element('speak', version='1.0')
        xml_body.set('{http://www.w3.org/XML/1998/namespace}lang', 'en-us')
        voice = ElementTree.SubElement(xml_body, 'voice')
        voice.set('{http://www.w3.org/XML/1998/namespace}lang', 'en-US')
        voice.set('name', 'Microsoft Server Speech Text to Speech Voice {}'.format(self.voice_font))
        voice.text = self.input_text
        # The body must be encoded as UTF-8 to handle non-ascii characters.
        body = ElementTree.tostring(xml_body, encoding="utf-8")

        #Send the request
        response = requests.post(constructed_url, headers=headers, data=body)

        # Write the response as a wav file for playback. The file is located
        # in the same directory where this sample is run.
        return response.content

3. Add your Speech Services subscription key and save.

Let's create a route in your Flask app that calls synthesize.py . This route will be called each time a user presses

the convert text-to-speech button in your app. Like the routes for translation and sentiment analysis, this route is

going to accept POST  requests since the function expects two arguments: the text to synthesize, and the voice

font for playback.

import translate, sentiment, synthesize

1. Open app.py  and locate the import statement at the top of app.py  and update it:

Now our Flask app can use the method available via synthesize.py .



  Update Update index.html

@app.route('/text-to-speech', methods=['POST'])
def text_to_speech():
    data = request.get_json()
    text_input = data['text']
    voice_font = data['voice']
    tts = synthesize.TextToSpeech(text_input, voice_font)
    tts.get_token()
    audio_response = tts.save_audio()
    return audio_response

2. Copy this code to the end of app.py  and save:

Now that you have a function to convert text-to-speech, and a route in your Flask app to call it, the next step is to

start writing the HTML for your app. The HTML below does a few things:

Provides a voice selection drop-down

Adds a button to convert text-to-speech

Adds an audio element, which is used to play back the synthesized speech

<!-- Start voice font selection code -->

<!-- End voice font selection code -->

1. Open index.html  and locate these code comments:

2. Replace the code comments with this HTML block:



<button type="submit" class="btn btn-primary mb-2" id="text-to-speech">Convert text-to-speech</button>
<div id="audio-playback">
  <audio id="audio" controls>
    <source id="audio-source" type="audio/mpeg" />
  </audio>
</div>

  Update Update main.js

<div class="form-group">
  <label for="select-voice"><strong>Select voice font:</strong></label>
  <select class="form-control" id="select-voice">
    <option value="(ar-SA, Naayf)">Arabic | Male | Naayf</option>
    <option value="(ca-ES, HerenaRUS)">Catalan | Female | HerenaRUS</option>
    <option value="(zh-CN, HuihuiRUS)">Chinese (Mainland) | Female | HuihuiRUS</option>
    <option value="(zh-CN, Kangkang, Apollo)">Chinese (Mainland) | Male | Kangkang, Apollo</option>
    <option value="(zh-HK, Tracy, Apollo)">Chinese (Hong Kong)| Female | Tracy, Apollo</option>
    <option value="(zh-HK, Danny, Apollo)">Chinese (Hong Kong) | Male | Danny, Apollo</option>
    <option value="(zh-TW, Yating, Apollo)">Chinese (Taiwan)| Female | Yating, Apollo</option>
    <option value="(zh-TW, Zhiwei, Apollo)">Chinese (Taiwan) | Male | Zhiwei, Apollo</option>
    <option value="(hr-HR, Matej)">Croatian | Male | Matej</option>
    <option value="(en-US, AriaRUS)">English (US) | Female | AriaRUS</option>
    <option value="(en-US, Guy24kRUS)">English (US) | Male | Guy24kRUS</option>
    <option value="(en-IE, Sean)">English (IE) | Male | Sean</option>
    <option value="(fr-FR, Julie, Apollo)">French | Female | Julie, Apollo</option>
    <option value="(fr-FR, HortenseRUS)">French | Female | Julie, HortenseRUS</option>
    <option value="(fr-FR, Paul, Apollo)">French | Male | Paul, Apollo</option>
    <option value="(de-DE, Hedda)">German | Female | Hedda</option>
    <option value="(de-DE, HeddaRUS)">German | Female | HeddaRUS</option>
    <option value="(de-DE, Stefan, Apollo)">German | Male | Apollo</option>
    <option value="(el-GR, Stefanos)">Greek | Male | Stefanos</option>
    <option value="(he-IL, Asaf)">Hebrew (Isreal) | Male | Asaf</option>
    <option value="(hi-IN, Kalpana, Apollo)">Hindi | Female | Kalpana, Apollo</option>
    <option value="(hi-IN, Hemant)">Hindi | Male | Hemant</option>
    <option value="(it-IT, LuciaRUS)">Italian | Female | LuciaRUS</option>
    <option value="(it-IT, Cosimo, Apollo)">Italian | Male | Cosimo, Apollo</option>
    <option value="(ja-JP, Ichiro, Apollo)">Japanese | Male | Ichiro</option>
    <option value="(ja-JP, HarukaRUS)">Japanese | Female | HarukaRUS</option>
    <option value="(ko-KR, HeamiRUS)">Korean | Female | Heami</option>
    <option value="(pt-BR, HeloisaRUS)">Portuguese (Brazil) | Female | HeloisaRUS</option>
    <option value="(pt-BR, Daniel, Apollo)">Portuguese (Brazil) | Male | Daniel, Apollo</option>
    <option value="(pt-PT, HeliaRUS)">Portuguese (Portugal) | Female | HeliaRUS</option>
    <option value="(ru-RU, Irina, Apollo)">Russian | Female | Irina, Apollo</option>
    <option value="(ru-RU, Pavel, Apollo)">Russian | Male | Pavel, Apollo</option>
    <option value="(ru-RU, EkaterinaRUS)">Russian | Female | EkaterinaRUS</option>
    <option value="(es-ES, Laura, Apollo)">Spanish | Female | Laura, Apollo</option>
    <option value="(es-ES, HelenaRUS)">Spanish | Female | HelenaRUS</option>
    <option value="(es-ES, Pablo, Apollo)">Spanish | Male | Pablo, Apollo</option>
    <option value="(th-TH, Pattara)">Thai | Male | Pattara</option>
    <option value="(tr-TR, SedaRUS)">Turkish | Female | SedaRUS</option>
    <option value="(vi-VN, An)">Vietnamese | Male | An</option>
  </select>
</div>

<!-- Add Speech Synthesis button and audio element -->

<!-- End Speech Synthesis button -->

3. Next, locate these code comments:

4. Replace the code comments with this HTML block:

5. Make sure to save your work.



In the code below, content from the HTML is used to construct a request to your Flask route. Specifically, the

translation and the voice font are assigned to variables, and then passed along in the request to the 

text-to-speech  route.

The code then iterates through the response, and updates the HTML with the sentiment scores.

1. From your IDE, create a file named main.js  in the static  directory.

2. Copy this code into static/scripts/main.js :

// Convert text-to-speech
$("#text-to-speech").on("click", function(e) {
  e.preventDefault();
  var ttsInput = document.getElementById("translation-result").value;
  var ttsVoice = document.getElementById("select-voice").value;
  var ttsRequest = { 'text': ttsInput, 'voice': ttsVoice }

  var xhr = new XMLHttpRequest();
  xhr.open("post", "/text-to-speech", true);
  xhr.setRequestHeader("Content-Type", "application/json");
  xhr.responseType = "blob";
  xhr.onload = function(evt){
    if (xhr.status === 200) {
      audioBlob = new Blob([xhr.response], {type: "audio/mpeg"});
      audioURL = URL.createObjectURL(audioBlob);
      if (audioURL.length > 5){
        var audio = document.getElementById("audio");
        var source = document.getElementById("audio-source");
        source.src = audioURL;
        audio.load();
        audio.play();
      }else{
        console.log("An error occurred getting and playing the audio.")
      }
    }
  }
  xhr.send(JSON.stringify(ttsRequest));
});
// Code for automatic language selection goes here.

3. You're almost done. The last thing you're going to do is add some code to main.js  to automatically select a

voice font based on the language selected for translation. Add this code block to main.js :



  Test your appTest your app

// Automatic voice font selection based on translation output.
$('select[id="select-language"]').change(function(e) {
  if ($(this).val() == "ar"){
    document.getElementById("select-voice").value = "(ar-SA, Naayf)";
  }
  if ($(this).val() == "ca"){
    document.getElementById("select-voice").value = "(ca-ES, HerenaRUS)";
  }
  if ($(this).val() == "zh-Hans"){
    document.getElementById("select-voice").value = "(zh-HK, Tracy, Apollo)";
  }
  if ($(this).val() == "zh-Hant"){
    document.getElementById("select-voice").value = "(zh-HK, Tracy, Apollo)";
  }
  if ($(this).val() == "hr"){
    document.getElementById("select-voice").value = "(hr-HR, Matej)";
  }
  if ($(this).val() == "en"){
    document.getElementById("select-voice").value = "(en-US, Jessa24kRUS)";
  }
  if ($(this).val() == "fr"){
    document.getElementById("select-voice").value = "(fr-FR, HortenseRUS)";
  }
  if ($(this).val() == "de"){
    document.getElementById("select-voice").value = "(de-DE, HeddaRUS)";
  }
  if ($(this).val() == "el"){
    document.getElementById("select-voice").value = "(el-GR, Stefanos)";
  }
  if ($(this).val() == "he"){
    document.getElementById("select-voice").value = "(he-IL, Asaf)";
  }
  if ($(this).val() == "hi"){
    document.getElementById("select-voice").value = "(hi-IN, Kalpana, Apollo)";
  }
  if ($(this).val() == "it"){
    document.getElementById("select-voice").value = "(it-IT, LuciaRUS)";
  }
  if ($(this).val() == "ja"){
    document.getElementById("select-voice").value = "(ja-JP, HarukaRUS)";
  }
  if ($(this).val() == "ko"){
    document.getElementById("select-voice").value = "(ko-KR, HeamiRUS)";
  }
  if ($(this).val() == "pt"){
    document.getElementById("select-voice").value = "(pt-BR, HeloisaRUS)";
  }
  if ($(this).val() == "ru"){
    document.getElementById("select-voice").value = "(ru-RU, EkaterinaRUS)";
  }
  if ($(this).val() == "es"){
    document.getElementById("select-voice").value = "(es-ES, HelenaRUS)";
  }
  if ($(this).val() == "th"){
    document.getElementById("select-voice").value = "(th-TH, Pattara)";
  }
  if ($(this).val() == "tr"){
    document.getElementById("select-voice").value = "(tr-TR, SedaRUS)";
  }
  if ($(this).val() == "vi"){
    document.getElementById("select-voice").value = "(vi-VN, An)";
  }
});

Let's test speech synthesis in the app.



flask run

TIPTIP

 Get the source code

 Next steps

Navigate to the provided server address. Type text into the input area, select a language, and press translate. You

should get a translation. Next, select a voice, then press the convert text-to-speech button. the translation should

be played back as synthesized speech. If it doesn't work, make sure that you've added your subscription key.

If the changes you've made aren't showing up, or the app doesn't work the way you expect it to, try clearing your cache

or opening a private/incognito window.

That's it, you have a working app that performs translations, analyzes sentiment, and synthesized speech. Press

CTRL + cCTRL + c to kill the app. Be sure to check out the other Azure Cognitive Services.

The source code for this project is available on GitHub.

Translator reference

Text Analytics API reference

Text-to-speech API reference

https://docs.microsoft.com/en-us/azure/cognitive-services/index
https://github.com/MicrosoftTranslator/Text-Translation-API-V3-Flask-App-Tutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics.V2.0/operations/56f30ceeeda5650db055a3c7
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/rest-text-to-speech


   

 

Extract information in Excel using Text Analytics and
Power Automate

 5/13/2021 • 6 minutes to read • Edit Online

 Prerequisites

 Add the Excel file to OneDrive for Business

 Create a new Power Automate workflow

In this tutorial, you'll create a Power Automate flow to extract text in an Excel spreadsheet without having to

write code.

This flow will take a spreadsheet of issues reported about an apartment complex, and classify them into two

categories: plumbing and other. It will also extract the names and phone numbers of the tenants who sent them.

Lastly, the flow will append this information to the Excel sheet.

In this tutorial, you'll learn how to:

Use Power Automate to create a flow

Upload Excel data from OneDrive for Business

Extract text from Excel, and send it to the Text Analytics API

Use the information from the API to update an Excel sheet.

A Microsoft Azure account. Create a free account or sign in.

A Text Analytics resource. If you don't have one, you can create one in the Azure portal and use the free tier to

complete this tutorial.

The key and endpoint that was generated for you during sign-up.

A spreadsheet containing tenant issues. Example data is provided on GitHub

Microsoft 365, with OneDrive for business.

Download the example Excel file from GitHub. This file must be stored in your OneDrive for Business account.

The issues are reported in raw text. We will use the Text Analytics API's Named Entity Recognition to extract the

person name and phone number. Then the flow will look for the word "plumbing" in the description to

categorize the issues.

Go to the Power Automate site, and login. Then click CreateCreate and Scheduled flowScheduled flow .

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/tutorials/extract-excel-information.md
https://azure.microsoft.com/free/cognitive-services/
https://portal.azure.com/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://github.com/Azure-Samples/cognitive-services-sample-data-files/blob/master/TextAnalytics/sample-data/ReportedIssues.xlsx
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/example-data.png#lightbox
https://preview.flow.microsoft.com/


F IEL DF IEL D VA L UEVA L UE

Flow nameFlow name Scheduled ReviewScheduled Review or another name.

Star tingStar ting Enter the current date and time.

Repeat ever yRepeat ever y 1 hour1 hour

 Add variables to the flow

On the Build a scheduled cloud flowBuild a scheduled cloud flow  page, initialize your flow with the following fields:

Create variables representing the information that will be added to the Excel file. Click New StepNew Step and search for

Initialize var iableInitialize var iable. Do this four times, to create four variables.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/flow-creation.png#lightbox


A C T IO NA C T IO N N A M EN A M E T Y P ET Y P E VA L UEVA L UE

Initialize variable var_person String Person

Initialize variable 2 var_phone String Phone Number

Initialize variable 3 var_plumbing String plumbing

Initialize variable 4 var_other String other

Add the following information to the variables you created. They represent the columns of the Excel file. If any

variables are collapsed, you can click on them to expand them.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/initialize-variables.png#lightbox


 Read the excel file
Click New StepNew Step and type ExcelExcel , then select L ist rows present in a tableList rows present in a table from the list of actions.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/flow-variables.png#lightbox


Add the Excel file to the flow by filling in the fields in this action. This tutorial requires the file to have been

uploaded to OneDrive for Business.

Click New StepNew Step and add an Apply to eachApply to each action.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/list-excel-rows.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/list-excel-rows-options.png#lightbox


 Send a request to the Text Analytics API

  Create a Text Analytics connectionCreate a Text Analytics connection

NOTENOTE

Click on Select an output from previous stepSelect an output from previous step. In the Dynamic content box that appears, select valuevalue.

If you haven't already, you need to create a Text Analytics resource in the Azure portal.

In the Apply to eachApply to each, click Add an actionAdd an action. Go to your Text Analytics resource's key and endpointkey and endpoint page in the

Azure portal, and get the key and endpoint for your Text Analytics resource.

In your flow, enter the following information to create a new Text Analytics connection.

If you already have created a Text Analytics connection and want to change your connection details, Click on the ellipsis

on the top right corner, and click + Add new connection+ Add new connection.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/select-output.png#lightbox
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics


F IEL DF IEL D VA L UEVA L UE

Connection Name A name for the connection to your Text Analytics resource.
For example, TAforPowerAutomate .

Account key The key for your Text Analytics resource.

Site URL The endpoint for your Text Analytics resource.

 Extract the excel content
After the connection is created, search for Text AnalyticsText Analytics  and select Named Entity RecognitionNamed Entity Recognition. This will

extract information from the description column of the issue.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-credentials.png#lightbox


Click in the TextText field and select Descr iptionDescr iption from the Dynamic content windows that appears. Enter en  for

Language, and a unique name as the document ID (you might need to click Show advanced optionsShow advanced options ).

Within the Apply to eachApply to each, click Add an actionAdd an action and create another Apply to eachApply to each action. Click inside the text

box and select documentsdocuments  in the Dynamic Content window that appears.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/extract-info.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/description-from-dynamic-content.png#lightbox


 Extract the person name
Next, we will find the person entity type in the Text Analytics output. Within the Apply to each 2Apply to each 2 , click Add anAdd an

actionaction, and create another Apply to eachApply to each action. Click inside the text box and select EntitiesEntities  in the Dynamic

Content window that appears.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/apply-to-each-documents.png#lightbox


Within the newly created Apply to each 3Apply to each 3  action, click Add an actionAdd an action, and add a ConditionCondition control.

In the Condition window, click on the first text box. In the Dynamic content window, search for Categor yCategor y  and

select it.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action-2.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/create-condition.png#lightbox


Make sure the second box is set to is equal tois equal to. Then select the third box, and search for var_person  in the

Dynamic content window.

In the If yesIf yes  condition, type in Excel then select Update a RowUpdate a Row .

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/choose-entities-value.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/choose-variable-value.png#lightbox


 Get the phone number

Enter the Excel information, and update the Key ColumnKey Column, Key ValueKey Value and PersonNamePersonName fields. This will append

the name detected by the API to the Excel sheet.

Minimize the Apply to each 3Apply to each 3  action by clicking on the name. Then add another Apply to eachApply to each action to

Apply to each 2Apply to each 2 , like before. it will be named Apply to each 4Apply to each 4 . Select the text box, and add entitiesentities  as the

output for this action.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/yes-column-action.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/yes-column-action-options.png#lightbox


Within Apply to each 4Apply to each 4 , add a ConditionCondition control. It will be named Condition 2Condition 2 . In the first text box, search

for, and add categoriescategories  from the Dynamic content window. Be sure the center box is set to is equal tois equal to. Then, in

the right text box, enter var_phone .

In the If yesIf yes  condition, add an Update a rowUpdate a row  action. Then enter the information like we did above, for the

phone numbers column of the Excel sheet. This will append the phone number detected by the API to the Excel

sheet.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action-phone.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/condition-2-options.png#lightbox


 Get the plumbing issues
Minimize Apply to each 4Apply to each 4  by clicking on the name. Then create another Apply to eachApply to each in the parent action.

Select the text box, and add EntitiesEntities  as the output for this action from the Dynamic content window.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/condition-2-yes-column.png#lightbox


Next, the flow will check if the issue description from the Excel table row contains the word "plumbing". If yes, it

will add "plumbing" in the IssueType column. If not, we will enter "other."

Inside the Apply to each 4Apply to each 4  action, add a ConditionCondition Control. It will be named Condition 3Condition 3 . In the first text box,

search for, and add Descr iptionDescr iption from the Excel file, using the Dynamic content window. Be sure the center box

says containscontains . Then, in the right text box, find and select var_plumbing .

In the If yesIf yes  condition, click Add an actionAdd an action, and select Update a rowUpdate a row . Then enter the information like before.

In the IssueType column, select var_plumbing . This will apply a "plumbing" label to the row.

In the If noIf no condition, click Add an actionAdd an action, and select Update a rowUpdate a row . Then enter the information like before. In

the IssueType column, select var_other . This will apply an "other" label to the row.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action-plumbing.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/condition-3-options.png#lightbox


 Test the workflow

 Next steps

In the top-right corner of the screen, click SaveSave, then TestTest. Under Test FlowTest Flow , select manuallymanually . Then click TestTest,

and Run flowRun flow .

The Excel file will get updated in your OneDrive account. It will look like the below.

Explore more solutions

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/plumbing-issue-condition.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/updated-excel-sheet.png#lightbox


   

 

Azure Cognitive Services support and help options
 3/20/2021 • 2 minutes to read • Edit Online

 Create an Azure support request

 Post a question on Microsoft Q&A

Are you just starting to explore the functionality of Azure Cognitive Services? Perhaps you are implementing a

new feature in your application. Or after using the service, do you have suggestions on how to improve it? Here

are options for where you can get support, stay up-to-date, give feedback, and report bugs for Cognitive

Services.

Explore the range of Azure support options and choose the plan that best fits, whether you're a developer just

starting your cloud journey or a large organization deploying business-critical, strategic applications. Azure

customers can create and manage support requests in the Azure portal.

Azure portal

Azure portal for the United States government

For quick and reliable answers on your technical product questions from Microsoft Engineers, Azure Most

Valuable Professionals (MVPs), or our expert community, engage with us on Microsoft Q&A, Azure's preferred

destination for community support.

If you can't find an answer to your problem using search, submit a new question to Microsoft Q&A. Use one of

the following tags when you ask your question:

Cognitive Services

VisionVision

Computer Vision

Custom Vision

Face

Form Recognizer

Video Indexer

LanguageLanguage

Immersive Reader

Language Understanding (LUIS)

QnA Maker

Text Analytics

Translator

SpeechSpeech

Speech service

DecisionDecision

Anomaly Detector

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/cognitive-services-support-options.md
https://azure.microsoft.com/support/plans
https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/overview
https://portal.azure.us
https://docs.microsoft.com/en-us/answers/products/azure?product=all
https://docs.microsoft.com/en-us/answers/topics/azure-cognitive-services.html
https://docs.microsoft.com/en-us/answers/topics/azure-computer-vision.html
https://docs.microsoft.com/en-us/answers/topics/azure-custom-vision.html
https://docs.microsoft.com/en-us/answers/topics/azure-face.html
https://docs.microsoft.com/en-us/answers/topics/azure-form-recognizer.html
https://docs.microsoft.com/en-us/answers/topics/azure-media-services.html
https://docs.microsoft.com/en-us/answers/topics/azure-immersive-reader.html
https://docs.microsoft.com/en-us/answers/topics/azure-language-understanding.html
https://docs.microsoft.com/en-us/answers/topics/azure-qna-maker.html
https://docs.microsoft.com/en-us/answers/topics/azure-text-analytics.html
https://docs.microsoft.com/en-us/answers/topics/azure-translator.html
https://docs.microsoft.com/en-us/answers/topics/azure-speech.html
https://docs.microsoft.com/en-us/answers/topics/azure-anomaly-detector.html


 Post a question to Stack Overflow

 Submit feedback on User Voice

Content Moderator

Metrics Advisor (preview)

Personalizer

For answers on your developer questions from the largest community developer ecosystem, ask your question

on Stack Overflow.

If you do submit a new question to Stack Overflow, please use one or more of the following tags when you

create the question:

Cognitive Services

VisionVision

Computer Vision

Custom Vision

Face

Form Recognizer

Video Indexer

LanguageLanguage

Immersive Reader

Language Understanding (LUIS)

QnA Maker

Text Analytics

Translator

SpeechSpeech

Speech service

DecisionDecision

Anomaly Detector

Content Moderator

Metrics Advisor (preview)

Personalizer

To request new features, post them on UserVoice. Share your ideas for making Cognitive Services and its APIs

work better for the applications you develop.

Cognitive Services

VisionVision

Computer Vision

Custom Vision

Face

https://docs.microsoft.com/en-us/answers/topics/azure-content-moderator.html
https://docs.microsoft.com/en-us/answers/topics/azure-personalizer.html
https://stackoverflow.com/questions/tagged/azure-cognitive-services
https://stackoverflow.com/search?q=azure+computer+vision
https://stackoverflow.com/search?q=azure+custom+vision
https://stackoverflow.com/search?q=azure+face
https://stackoverflow.com/search?q=azure+form+recognizer
https://stackoverflow.com/search?q=azure+video+indexer
https://stackoverflow.com/search?q=azure+immersive+reader
https://stackoverflow.com/search?q=azure+luis+language+understanding
https://stackoverflow.com/search?q=azure+qna+maker
https://stackoverflow.com/search?q=azure+text+analytics
https://stackoverflow.com/search?q=azure+translator+text
https://stackoverflow.com/search?q=azure+speech
https://stackoverflow.com/search?q=azure+anomaly+detector
https://stackoverflow.com/search?q=azure+content+moderator
https://stackoverflow.com/search?q=azure+metrics+advisor
https://stackoverflow.com/search?q=azure+personalizer
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395737
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743


 Stay informed

 Next steps

Form Recognizer

Video Indexer

LanguageLanguage

Immersive Reader

Language Understanding (LUIS)

QnA Maker

Text Analytics

Translator

SpeechSpeech

Speech service

DecisionDecision

Anomaly Detector

Content Moderator

Metrics Advisor (preview)

Personalizer

Staying informed about features in a new release or news on the Azure blog can help you find the difference

between a programming error, a service bug, or a feature not yet available in Cognitive Services.

Learn more about product updates, roadmap, and announcements in Azure Updates.

See what Cognitive Services articles have recently been added or updated in What's new in docs?

News about Cognitive Services is shared in the Azure blog.

Join the conversation on Reddit about Cognitive Services.

What are Azure Cognitive Services?

https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395740
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://azure.microsoft.com/updates/?category=ai-machine-learning&query=Azure%20Cognitive%20Services
https://docs.microsoft.com/en-us/azure/cognitive-services/whats-new-docs
https://azure.microsoft.com/blog/topics/cognitive-services/
https://www.reddit.com/r/AZURE/search/?q=Cognitive%20Services&restrict_sr=1
https://docs.microsoft.com/en-us/azure/cognitive-services/what-are-cognitive-services


   

 

External & community content for the Text Analytics
Cognitive Service

 5/4/2021 • 2 minutes to read • Edit Online

 Blogs

 Videos

 Next steps

 See also

Links in this article lead you to helpful web content developed and produced by partners and professionals with

experience in using the Text Analytics API.

Text Analytics API original announcement (Azure blog)

Using Text Analytics Key Phrase Cognitive Services API from PowerShell (AutomationNext blog)

R Quick tip: Azure Cognitive Services’ Text Analytics API (R Bloggers)

Sentiment analysis in Logic App using SQL Server data (TechNet blog)

Sentiment analysis with Dynamics 365 CRM Online (MSDN blog)

Power BI blog: Extraction of key phrases from Facebook messages: Part 1 and Part 2

Identify the sentiment of comments in a Yammer group with MS Flow (Microsoft tech community)

Logic App to detect sentiment and extract key phrases from your text

Sentiment Analysis using Power BI and Azure Cognitive Services

Text analytics extract key phrases using Power BI and Azure Cognitive Services

Are you looking for information about a feature or use-case that we don't cover? Consider requesting or voting

for it using the feedback tool.

StackOverflow: Azure Text Analytics API

StackOverflow: Azure Cognitive Services

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/text-analytics-resource-external-community.md
https://azure.microsoft.com/blog/using-text-analytics-in-call-centers/
https://automationnext.wordpress.com/tag/text-analytics/
https://www.r-bloggers.com/r-quick-tip-microsoft-cognitive-services-text-analytics-api/
https://social.technet.microsoft.com/wiki/contents/articles/36074.logic-apps-with-azure-cognitive-service.aspx
https://docs.microsoft.com/en-us/archive/blogs/geoffreyinnis/sentiment-analysis-in-usd-with-cognitive-services-text-analytics
https://community.powerbi.com/t5/Community-Blog/Text-Analytics-in-Power-BI-Extraction-of-key-phrases-from/ba-p/88483
https://community.powerbi.com/t5/Community-Blog/Text-Analytics-in-Power-BI-Extraction-of-key-phrases-from/ba-p/88487
https://docs.microsoft.com/en-us/yammer/integrate-yammer-with-other-apps/sentiment-analysis-flow-azure
https://www.youtube.com/watch?v=jVN9NObAzgk
https://www.youtube.com/watch?v=gJ1j3N7Y75k
https://www.youtube.com/watch?v=R_-1TB2BF14
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://stackoverflow.com/questions/tagged/text-analytics-api
https://stackoverflow.com/questions/tagged/microsoft-cognitive

	Cover Page
	Text Analytics API Documentation
	Overview
	What is the Text Analytics API?
	Language support
	Pricing
	What's new
	Text Analytics FAQ

	Quickstart
	Samples
	v3.0
	C#
	Python
	Java
	JavaScript

	v3.1
	C#
	Python
	Java
	JavaScript


	Responsible use of AI
	Transparency notes
	For Text Analytics
	For Health
	For Named Entity Recognition (NER) and Personally Identifying Information (PII)
	For Sentiment Analysis
	For Key Phrase Analysis
	For Language Detection

	Integration and responsible use
	Data, privacy, and security

	How-to guides
	Call the Text Analytics API
	Language detection
	Sentiment analysis and opinion mining
	Key phrase extraction
	Named entity recognition and PII
	Text Analytics for health
	Use containers
	Install and run containers
	Configure containers
	Use container instances
	Use kubernetes service (AKS)
	All Cognitive Services containers documentation

	Enterprise readiness
	Set up Virtual Networks
	Use Azure AD authentication

	Migrate to version 3 of the API

	Concepts
	Example user scenarios
	Named entity types
	Unicode encodings and text offsets
	Data limits
	Model versioning

	Tutorials
	Integrate Power BI to analyze customer feedback
	Text Analytics in Power Apps
	Sentiment analysis on streaming data using Azure Databricks
	Use Flask to translate text, analyze sentiment, and synthesize speech
	Extract information in Excel using Power Automate

	Reference
	Text Analytics API
	v3.1
	v3.0
	v2 (Retiring)

	SDKs
	v3.1
	.NET
	Python
	Java
	Node.js

	v3.0
	.NET
	Python
	Java
	Node.js

	v2 (Retiring)
	.NET
	Python
	Java
	Node.js
	Go


	CLI reference
	PowerShell reference

	Resources
	Enterprise readiness
	Region support
	Compliance and certification

	Support and help options
	External and community content


