Contents

Text Analytics API Documentation
Overview
What is the Text Analytics API?
Language support
Pricing
What's new
Text Analytics FAQ
Quickstart
Samples
v3.0
C#
Python
Java
JavaScript
v3.1
C#
Python
Java
JavaScript
Responsible use of Al
Transparency notes
For Text Analytics
For Health
For Named Entity Recognition (NER) and Personally Identifying Information (PI1)
For Sentiment Analysis
For Key Phrase Analysis
For Language Detection
Integration and responsible use

Data, privacy, and security

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/index.html#body
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/text-analytics-resource-faq.html#body
https://github.com/Azure/azure-sdk-for-net/tree/Azure.AI.TextAnalytics_5.0.0/sdk/textanalytics/Azure.AI.TextAnalytics/samples
https://github.com/Azure/azure-sdk-for-python/tree/azure-ai-textanalytics_5.0.0_tests/sdk/textanalytics/azure-ai-textanalytics/samples
https://github.com/Azure/azure-sdk-for-java/tree/azure-ai-textanalytics_5.0.0/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/samples
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-health
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-named-entity-recognition
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-sentiment-analysis
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-key-phrase-extraction
https://docs.microsoft.com/legal/cognitive-services/text-analytics/transparency-note-language-detection
https://docs.microsoft.com/legal/cognitive-services/text-analytics/guidance-integration-responsible-use
https://docs.microsoft.com/legal/cognitive-services/text-analytics/data-privacy

How-to guides
Call the Text Analytics API
Language detection
Sentiment analysis and opinion mining
Key phrase extraction
Named entity recognition and PlI|
Text Analytics for health
Use containers
Install and run containers
Configure containers
Use container instances
Use kubernetes service (AKS)
All Cognitive Services containers documentation
Enterprise readiness
Set up Virtual Networks
Use Azure AD authentication
Migrate to version 3 of the API
Concepts
Example user scenarios
Named entity types
Unicode encodings and text offsets
Data limits
Model versioning
Tutorials
Integrate Power Bl to analyze customer feedback
Text Analytics in Power Apps
Sentiment analysis on streaming data using Azure Databricks
Use Flask to translate text, analyze sentiment, and synthesize speech
Extract information in Excel using Power Automate
Reference
Text Analytics API
v3.1

file:///T:/uy1a/ctsj/azure/cognitive-services/containers/index.html#body
https://powerapps.microsoft.com/tutorials/cognitive-services-api/
https://docs.microsoft.com/azure/databricks/scenarios/databricks-sentiment-analysis-cognitive-services
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1

v3.0
v2 (Retiring)
SDKs
v3.1
NET
Python
Java
Node.js
v3.0
NET
Python
Java
Node.js
v2 (Retiring)
NET
Python
Java
Node.js
Go
CLI reference
PowerShell reference
Resources
Enterprise readiness
Region support
Compliance and certification
Support and help options

External and community content

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1
https://docs.microsoft.com/dotnet/api/azure.ai.textanalytics
https://docs.microsoft.com/python/api/azure-ai-textanalytics/azure.ai.textanalytics
https://docs.microsoft.com/java/api/overview/azure/ai-textanalytics-readme
https://docs.microsoft.com/javascript/api/overview/azure/ai-text-analytics-readme
https://docs.microsoft.com/dotnet/api/azure.ai.textanalytics
https://docs.microsoft.com/python/api/azure-ai-textanalytics/azure.ai.textanalytics
https://docs.microsoft.com/java/api/overview/azure/ai-textanalytics-readme
https://docs.microsoft.com/javascript/api/overview/azure/ai-text-analytics-readme
https://docs.microsoft.com/dotnet/api/overview/azure/cognitiveservices/client
https://docs.microsoft.com/python/api/overview/azure/cognitiveservices/textanalytics
https://docs.microsoft.com/java/api/overview/azure/cognitiveservices/client/textanalytics
https://docs.microsoft.com/javascript/api/@azure/cognitiveservices-textanalytics/
https://godoc.org/github.com/Azure/azure-sdk-for-go/services/cognitiveservices/v2.1/textanalytics
https://docs.microsoft.com/cli/azure/cognitiveservices#az_cognitiveservices_list
https://docs.microsoft.com/powershell/module/azurerm.cognitiveservices/
https://azure.microsoft.com/global-infrastructure/services/
https://azure.microsoft.com/support/legal/cognitive-services-compliance-and-privacy/

What is the Text Analytics API?

7/8/2021 « 5 minutes to read ¢ Edit Online

The Text Analytics APl is a cloud-based service that provides Natural Language Processing (NLP) features for text
mining and text analysis, including: sentiment analysis, opinion mining, key phrase extraction, language
detection, and named entity recognition.

The APl is a part of Azure Cognitive Services, a collection of machine learning and Al algorithms in the cloud for
your development projects. You can use these features with the REST API version 3.0 or version 3.1, or the client
library.

This documentation contains the following types of articles:

e Quickstarts are step-by-step instructions that let you make calls to the service and get results in a short
period of time.

e How-to guides contain instructions for using the service in more specific or customized ways.
e Concepts provide in-depth explanations of the service's functionality and features.

e Tutorials are longer guides that show you how to use this service as a component in broader business
solutions.

Sentiment analysis

Use sentiment analysis (SA) and find out what people think of your brand or topic by mining the text for clues
about positive or negative sentiment.

The feature provides sentiment labels (such as "negative”, "neutral" and "positive") based on the highest
confidence score found by the service at a sentence and document-level. This feature also returns confidence
scores between 0 and 1 for each document & sentences within it for positive, neutral and negative sentiment.
You can also be run the service on premises using a container.

Starting in the v3.1, opinion mining (OM) is a feature of Sentiment Analysis. Also known as Aspect-based
Sentiment Analysis in Natural Language Processing (NLP), this feature provides more granular information
about the opinions related to words (such as the attributes of products or services) in text.

Key phrase extraction

Use key phrase extraction (KPE) to quickly identify the main concepts in text. For example, in the text "The food
was delicious and there were wonderful staff", Key Phrase Extraction will return the main talking points: "food"
and "wonderful staff".

Language detection

Language detection can detect the language an input text is written in and report a single language code for
every document submitted on the request in a wide range of languages, variants, dialects, and some
regional/cultural languages. The language code is paired with a confidence score.

Named entity recognition

Named Entity Recognition (NER) can Identify and categorize entities in your text as people, places, organizations,

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/overview.md
https://docs.microsoft.com/en-us/azure/cognitive-services/index
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-V3-0/
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1
https://channel9.msdn.com/Shows/AI-Show/Whats-New-in-Text-Analytics-Opinion-Mining-and-Async-API/player?nocookie=true

quantities, Well-known entities are also recognized and linked to more information on the web.

Text Analytics for health

Text Analytics for health is a feature of the Text Analytics API service that extracts and labels relevant medical
information from unstructured texts such as doctor's notes, discharge summaries, clinical documents, and
electronic health records.

Deploy on premises using Docker containers

Use Text Analytics containers to deploy API features on-premises. These docker containers enable you to bring
the service closer to your data for compliance, security or other operational reasons. Text Analytics offers the
following containers:

e sentiment analysis
e key phrase extraction (preview)
e |anguage detection (preview)

e Text Analytics for health

Asynchronous operations

The /analyze endpointenables you to use many features of the Text Analytics APl asynchronously. Named
Entity Recognition (NER), Key phrase extraction (KPE), Sentiment Analysis (SA), Opinion Mining (OM) are
available as part of /analyze endpoint. It allows clubbing of these features in a single call. It allows sending up
to 125,000 characters per document. Pricing is same as regular Text Analytics.

Typical workflow

The workflow is simple: you submit data for analysis and handle outputs in your code. Analyzers are consumed

as-is, with no additional configuration or customization.

1. Create an Azure resource for Text Analytics. Afterwards, get the key generated for you to authenticate
your requests.

2. Formulate a request containing your data as raw unstructured text, in JSON.

3. Post the request to the endpoint established during sign-up, appending the desired resource: sentiment
analysis, key phrase extraction, language detection, or named entity recognition.

4. Stream or store the response locally. Depending on the request, results are either a sentiment score, a
collection of extracted key phrases, or a language code.

Output is returned as a single JSON document, with results for each text document you posted, based on ID. You
can subsequently analyze, visualize, or categorize the results into actionable insights.

Data is not stored in your account. Operations performed by the Text Analytics API are stateless, which means
the text you provide is processed and results are returned immediately.

Text Analytics for multiple programming experience levels

You can start using the Text Analytics APl in your processes, even if you don't have much experience in
programming. Use these tutorials to learn how you can use the API to analyze text in different ways to fit your
experience level.

e Minimal programming required:

o Extractinformation in Excel using Text Analytics and Power Automate

o Use the Text Analytics APl and MS Flow to identify the sentiment of comments in a Yammer group
o Integrate Power Bl with the Text Analytics APl to analyze customer feedback

e Programming experience recommended:
o Sentiment analysis on streaming data using Azure Databricks

o Build a Flask app to translate text, analyze sentiment, and synthesize speech

Supported languages

This section has been moved to a separate article for better discoverability. Refer to Supported languages in the
Text Analytics API for this content.

Data limits

All of the Text Analytics APl endpoints accept raw text data. See the Data limits article for more information.

Unicode encoding

The Text Analytics APl uses Unicode encoding for text representation and character count calculations. Requests
can be submitted in both UTF-8 and UTF-16 with no measurable differences in the character count. Unicode
codepoints are used as the heuristic for character length and are considered equivalent for the purposes of text
analytics data limits. If you use stringInfo.LengthInTextElements to getthe character count, you are using the

same method we use to measure data size.

Next steps

e Create an Azure resource for Text Analytics to get a key and endpoint for your applications.

o Use the quickstart to start sending API calls. Learn how to submit text, choose an analysis, and view
results with minimal code.

e See what's new in the Text Analytics API for information on new releases and features.
e Digin a little deeper with this sentiment analysis tutorial using Azure Databricks.

e Check out our list of blog posts and more videos on how to use the Text Analytics APl with other tools
and technologies in our External & Community Content page.

https://docs.microsoft.com/en-us/yammer/integrate-yammer-with-other-apps/sentiment-analysis-flow-azure?bc=%252f%252fazure%252fbread%252ftoc.json&toc=%252f%252fazure%252fcognitive-services%252ftext-analytics%252ftoc.json
https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-sentiment-analysis-cognitive-services?bc=%252f%252fazure%252fbread%252ftoc.json&toc=%252f%252fazure%252fcognitive-services%252ftext-analytics%252ftoc.json
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.lengthintextelements
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-sentiment-analysis-cognitive-services

Text Analytics API v3 language support

7/8/2021 « 6 minutes to read ¢ Edit Online

e Sentiment Analysis

e Named Entity Recognition (NER)

e Key Phrase Extraction

e Entity Linking

e Text Analytics for health

e Personally Identifiable Information (PII)

® |anguage Detection

NOTE

Languages are added as new model versions are released for specific Text Analytics features. The current model version for
Sentiment Analysis is 2020-04-01 .

STARTING V3 MODEL

LANGUAGE LANGUAGE CODE V3 SUPPORT VERSION: NOTES
Chinese-Simplified zh-hans v 2019-10-01 zh also accepted
Chinese-Traditional zh-hant v 2019-10-01

Dutch nl v 2019-10-01

English en v 2019-10-01

French fr v 2019-10-01

German de v 2019-10-01

Hindi hi v 2020-04-01

Italian it v 2019-10-01

Japanese ja v 2019-10-01

Korean ko v 2019-10-01

Norwegian (Bokmal) no v 2020-04-01

Portuguese (Brazil) pt-BR v 2020-04-01

Portuguese pt-PT v 2019-10-01 pt also accepted

(Portugal)

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/language-support.md

LANGUAGE LANGUAGE CODE
Spanish es
Turkish tr

Opinion mining (v3.1 only)

LANGUAGE LANGUAGE CODE
English en
See also

e What is the Text Analytics API?

o Model versions

V3 SUPPORT

STARTING V3 MODEL
VERSION: NOTES

2019-10-01

2020-04-01

STARTING WITH V3 MODEL
VERSION: NOTES

2020-04-01

What's new in the Text Analytics API?

7/12/2021 » 9 minutes to read « Edit Online

The Text Analytics APl is updated on an ongoing basis. To stay up-to-date with recent developments, this article
provides you with information about new releases and features.

July 2021

GA release updates

e General availability for Text Analytics for health for both containers and hosted API (/health).
e General availability for Opinion Mining.

e General availability for Pll extraction and redaction.

e General availability for Asynchronous (/analyze) endpoint.

e Updated quickstart examples with new SDK.

June 2021

General API updates
e New model-version 2021-e6-01 for key phrase extraction based on transformers. It provides:
o Support for 10 languages (Latin and CJK).
o Improved key phrase extraction.
e The 2021-06-61 model version for Named Entity Recognition v3.x, which provides
o Improved Al quality and expanded language support for the Ski// entity category.
o Added Spanish, French, German, Italian and Portuguese language support for the Ski/l entity category

e Asynchronous (/analyze) operation and Text Analytics for health (ungated preview) is available in all regions.

Text Analytics for health updates
e You no longer need to apply for access to preview Text Analytics for health.
e Anew model version 2021-e5-15 for the /health endpoint and on-premise container which provides
o 5 new entity types: ALLERGEN , CONDITION_SCALE , COURSE , EXPRESSION and MUTATION_TYPE ,
o 14 new relation types,
o Assertion detection expanded for new entity types and
o Linking support for ALLERGEN entity type

e A new image for the Text Analytics for health container with tag 3.0.016230002-onprem-amdé4 and model

version 2021-e5-15 . This container is available for download from Microsoft Container Registry.

May 2021

e Custom question answering (previously QnA maker) can now be accessed using a Text Analytics resource.

General API updates
e Release of the new API v3.1-preview.5 which includes
o Asynchronous Analyze APl now supports Sentiment Analysis (SA) and Opinion Mining (OM).

o Anew query parameter, LoggingOptout , is now available for customers who wish to opt out of logging
input text for incident reports. Learn more about this parameter in the data privacy article.

e Text Analytics for health and the Analyze asynchronous operations are now available in all regions

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/whats-new.md
https://docs.microsoft.com/en-us/azure/cognitive-services/qnamaker/custom-question-answering
https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/data-privacy?context=/azure/cognitive-services/text-analytics/context/context

March 2021

General API updates

e Release of the new APl v3.1-preview.4 which includes

o Changes in the Opinion Mining JSON response body:
O aspects iSNOW targets and opinions iS NOW assessments .
o Changes in the JSON response body of the hosted web API of Text Analytics for health:

o The isNegated boolean name of a detected entity object for Negation is deprecated and
replaced by Assertion Detection.

o Anew property called role is now part of the extracted relation between an attribute and an
entity as well as the relation between entities. This adds specificity to the detected relation type.
o Entity linking is now available as an asynchronous task in the /analyze endpoint.
o Anew pii-categories parameter is now available in the /pii endpoint.

o This parameter lets you specify select Pll entities as well as those not supported by default for
the input language.

e Updated client libraries, which include asynchronous Analyze, and Text Analytics for health operations.
You can find examples on GitHub:

o C#
o Python
o Java

o JavaScript
Learn more about Text Analytics APl v3.1-Preview.4

Text Analytics for health updates

e Anew model version 2021-e3-e1 for the /health endpoint and on-premise container which provides
o Arename of the Gene entity type to Geneorprotein .
o Anew Date entity type.
o Assertion detection which replaces negation detection (only available in APl v3.1-preview.4).

o Anew preferred name property for linked entities that is normalized from various ontologies and
coding systems (only available in APl v3.1-preview4).

e A new container image with tag 3.0.015490002-onprem-amde4 and the new model-version 2e21-e3-e1 has

been released to the container preview repository.

o This container image will no longer be available for download from containerpreview.azurecr.io after
April 26th, 2021.

e Anew Text Analytics for health container image with this same model-version is now available at
mcr.microsoft.com/azure-cognitive-services/textanalytics/healthcare . Starting April 26th, you will only be

able to download the container from this repository.
Learn more about Text Analytics for health

Text Analytics resource portal update

e Processed Text Records is now available as a metric in the Monitoring section for your Text Analytics
resource in the Azure portal.

February 2021

e The 2021-01-15 model version for the Pll endpoint in Named Entity Recognition v3.1-preview.x, which
provides

https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples/v5/javascript
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-4/operations/Languages

o Expanded support for 9 new languages
o Improved Al quality of named entity categories for supported languages.

e The SO through S4 pricing tiers are being retired on March 8th, 2021. If you have an existing Text Analytics
resource using the SO through S4 pricing tier, you should update it to use the Standard (S) pricing tier.

e The language detection container is now generally available.

e v2.1 of the APl is being retired.

January 2021

e The 2021-01-15 model version for Named Entity Recognition v3.x, which provides

o Expanded language support for several general entity categories.
o Improved Al quality of general entity categories for all supported v3 languages.
e The 2021-01-05 model version for language detection, which provides additional language support.

These model versions are currently unavailable in the East US region.

Learn more about about the new NER model

December 2020

e Updated pricing details for the Text Analytics API.

November 2020

e A new endpoint with Text Analytics APl v3.1-preview.3 for the new asynchronous Analyze API, which
supports batch processing for NER, PIl, and key phrase extraction operations.

e A new endpoint with Text Analytics APl v3.1-preview.3 for the new asynchronous Text Analytics for health
hosted API with support for batch processing.

e Both new features listed above are only available in the following regions: west us 2, East uUs 2,

Central US , North Europe and West Europe regions.

e Portuguese (Brazil) pt-BR is now supported in Sentiment Analysis v3.x, starting with model version

2020-04-01 . It adds to the existing pt-PT support for Portuguese.

e Updated client libraries, which include asynchronous Analyze, and Text Analytics for health operations.
You can find examples on GitHub:

o C#
o Python
o Java

o

Learn more about Text Analytics APl v3.1-Preview.3

October 2020

e Hindi support for Sentiment Analysis v3.x, starting with model version 2020-e4-e1 .

e Model version 2020-89-e1 for the v3 /languages endpoint, which adds increased language detection and
accuracy improvements.

e v3 availability in Central India and UAE North.

https://azure.microsoft.com/updates/text-analytics-ner-improved-ai-quality
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-3/operations/Analyze
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-3/operations/Health
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-3/operations/Languages

September 2020

General API updates

e Release of a new URL for the Text Analytics v3.1 public preview to support updates to the following Named
Entity Recognition v3 endpoints:

o /pii endpoint now includes the new redactedText property in the response JSON where detected

Pll entities in the input text are replaced by an * for each character of those entities.
o /linking endpoint now includes the bingID property in the response JSON for linked entities.
e The following Text Analytics preview APl endpoints were retired on September 4th, 2020:
o v2.1-preview
o v3.0-preview

o v3.0-preview.1
Learn more about Text Analytics APl v3.1-Preview.2

Text Analytics for health container updates

The following updates are specific to the September release of the Text Analytics for health container only.

e A new container image with tag 1.1.613530001-amd64-preview with the new model-version 2020-89-e3 has
been released to the container preview repository.

e This model version provides improvements in entity recognition, abbreviation detection, and latency
enhancements.

Learn more about Text Analytics for health

August 2020

General APl updates

o Model version 2020-e7-e1 for the v3 /keyphrases , /pii and /languages endpoints, which adds:
o Additional government and country specific entity categories for Named Entity Recognition.
o Norwegian and Turkish support in Sentiment Analysis v3.

e An HTTP 400 error will now be returned for v3 APl requests that exceed the published data limits.

e Endpoints that return an offset now support the optional stringIndexType parameter, which adjusts the

returned offset and length values to match a supported string index scheme.

Text Analytics for health container updates

The following updates are specific to the August release of the Text Analytics for health container only.

e New model-version for Text Analytics for health: 2020-07-24

e New URL for sending Text Analytics for health requests:
http://<serverURL>:5000/text/analytics/v3.2-preview.1/entities/health (Please note that a browser cache

clearing will be needed in order to use the demo web app included in this new container image)
The following properties in the JSON response have changed:

® type has beenrenamedto category
® score has been renamed to confidenceScore

e Entities in the category field of the JSON output are now in pascal case. The following entities have been
renamed:

O EXAMINATION_RELATION has been renamed to RelationalOperator .
O EXAMINATION_UNIT has beenrenamed to MeasurementUnit .

O EXAMINATION_VALUE has been renamed to MeasurementValue .

O ROUTE_OR_MODE has been renamed MedicationRoute .

o The relational entity ROUTE_OR_MODE_OF_MEDICATION has been renamed to RouteOfMedication .

The following entities have been added:

e NER

O AdministrativeEvent
O CareEnvironment

O HealthcareProfession
O MedicationForm

e Relation extraction

O DirectionOfCondition
O DirectionOfExamination

O DirectionOfTreatment

Learn more about Text Analytics for health container

July 2020

Text Analytics for health container - Public gated preview

The Text Analytics for health container is now in public gated preview, which lets you extract information from
unstructured English-language text in clinical documents such as: patient intake forms, doctor's notes, research
papers and discharge summaries. Currently, you will not be billed for Text Analytics for health container usage.

The container offers the following features:

Named Entity Recognition

Relation extraction

Entity linking

Negation

May 2020

Text Analytics APl v3 General Availability

Text Analysis APl v3 is now generally available with the following updates:

e Model version 2020-04-01
e New data limits for each feature
e Updated language support for Sentiment Analysis (SA) v3
e Separate endpoint for Entity Linking
e New "Address" entity category in Named Entity Recognition (NER) v3.
e New subcategories in NER v3:

o Location - Geographical

o Location - Structural

o Organization - Stock Exchange

o Organization - Medical

o Organization - Sports

o Event - Cultural

o Event - Natural

o Event - Sports

The following properties in the JSON response have been added:

® SentenceText in Sentiment Analysis

® warnings for each document

The names of the following properties in the JSON response have been changed, where applicable:

® score has beenrenamed to confidenceScore
O confidencescore has two decimal points of precision.
® type has beenrenamedto category

® subtype has beenrenamedto subcategory

Learn more about Text Analytics API v3

Text Analytics APl v3.1 Public Preview
e New Sentiment Analysis feature - Opinion Mining

e New Personal (P11) domain filter for protected health information (pPHI).

Learn more about Text Analytics APl v3.1 Preview

February 2020

SDK support for Text Analytics APl v3 Public Preview

As part of the unified Azure SDK release, the Text Analytics APl v3 SDK is now available as a public preview for
the following programming languages:

o C#

e Python

e JavaScript (Nodejs)

® Java

Learn more about Text Analytics APl v3 SDK

Named Entity Recognition v3 public preview

Additional entity types are now available in the Named Entity Recognition (NER) v3 public preview service as we
expand the detection of general and personal information entities found in text. This update introduces model
version 2020-02-01 , which includes:

e Recognition of the following general entity types (English only):

o PersonType

o

Product

o Event

o

Geopolitical Entity (GPE) as a subtype under Location
o Skill

e Recognition of the following personal information entity types (English only):

o Person

o Organization

o Age as a subtype under Quantity
o Date as a subtype under DateTime
o Email

o Phone Number (US only)

o URL

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0/operations/Languages
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-preview-1/operations/Languages
https://techcommunity.microsoft.com/t5/azure-sdk/january-2020-unified-azure-sdk-release/ba-p/1097290

o [P Address

October 2019
Named Entity Recognition (NER)

e Anew endpoint for recognizing personal information entity types (English only)
e Separate endpoints for entity recognition and entity linking.

e Model version 2019-10-01 , which includes:

o Expanded detection and categorization of entities found in text.
o Recognition of the following new entity types:
o Phone number

o [P address

Entity linking supports English and Spanish. NER language support varies by the entity type.

Sentiment Analysis v3 public preview

e A new endpoint for analyzing sentiment.

e Model version 2019-10-01 , which includes:

o Significant improvements in the accuracy and detail of the API's text categorization and scoring.
o Automatic labeling for different sentiments in text.

o Sentiment analysis and output on a document and sentence level.

It supports English (en), Japanese (ja), Chinese Simplified (zh-Hans), Chinese Traditional (zh-Hant), French (
fr), Italian (it), Spanish (es), Dutch (n1), Portuguese (pt), and German (de), and is available in the
following regions: Australia East , Central Canada , Central US, East Asia, East US, East US 2,

North Europe , Southeast Asia , South Central US , UK South , West Europe , and West US 2 .

Learn more about Sentiment Analysis v3

Next steps

e What is the Text Analytics API?
e Example user scenarios

e Sentiment analysis

e Language detection

e Entity recognition

e Key phrase extraction

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/EntitiesRecognitionPii
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/EntitiesRecognitionGeneral
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/EntitiesLinking
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1-Preview-2/operations/Sentiment

Quickstart: Use the Text Analytics client library and

REST API

7/9/2021 « 77 minutes to read » Edit Online

Use this article to get started with the Text Analytics client library and REST API. Follow these steps to try out
examples code for mining text:

Sentiment analysis

Opinion mining

Language detection

Entity recognition

Personal Identifying Information recognition

Key phrase extraction

IMPORTANT

® The latest stable version of the Text Analytics APl is 3.1 .
o Be sure to only follow the instructions for the version you are using.

® The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For
production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See
the reference documentation below.

e [fyou want to use Text Analytics for health or Asynchronous operations, see the examples on Github for C#, Python or
Java

Version 3.1

Version 3.0

v3.1 Reference documentation | v3.1 Library source code | v3.1 Package (NuGet) | v3.1 Samples

Prerequisites

Azure subscription - Create one for free
The Visual Studio IDE

Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key
and endpoint. After it deploys, click Go to resource.

o You will need the key and endpoint from the resource you create to connect your application to the
Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

o You can use the free pricing tier (Fo) to try the service, and upgrade later to a paid tier for production.

To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

Setting up

Create a new .NET Core application

Using the Visual Studio IDE, create a new .NET Core console app. This will create a "Hello World" project with a

single C# source file: program.cs.

Version 3.1

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/quickstarts/client-libraries-rest-api.md
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://docs.microsoft.com/en-us/dotnet/api/azure.ai.textanalytics?preserve-view=true&view=azure-dotnet-preview
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://www.nuget.org/packages/Azure.AI.TextAnalytics/5.1.0
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples
https://azure.microsoft.com/free/cognitive-services
https://visualstudio.microsoft.com/vs/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics

e \ersion 3.0

Install the client library by right-clicking on the solution in the Solution Explorer and selecting Manage
NuGet Packages. In the package manager that opens select Browse and search for Azure.AI.TextAnalytics .

Select version 5.1.e ,and then Install. You can also use the Package Manager Console.

e Version 3.1

e Version 3.0

Open the program.cs file and add the following using directives:

using Azure;

using System;

using System.Globalization;
using Azure.AI.TextAnalytics;

In the application's program class, create variables for your resource's key and endpoint.

IMPORTANT
Go to the Azure portal. If the Text Analytics resource you created in the Prerequisites section deployed successfully, click
the Go to Resource button under Next Steps. You can find your key and endpoint in the resource's key and

endpoint page, under resource management.

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

private static readonly AzureKeyCredential credentials = new AzureKeyCredential("<replace-with-your-text-
analytics-key-here>");
private static readonly Uri endpoint = new Uri("<replace-with-your-text-analytics-endpoint-here>");

Replace the application's Main method. You will define the methods called here later.

static void Main(string[] args)

{
var client = new TextAnalyticsClient(endpoint, credentials);
// You will implement these methods later in the quickstart.
SentimentAnalysisExample(client);
SentimentAnalysisWithOpinionMiningExample(client);
LanguageDetectionExample(client);
EntityRecognitionExample(client);
EntityLinkingExample(client);
RecognizePIIExample(client);
KeyPhraseExtractionExample(client);

Console.Write("Press any key to exit.");
Console.ReadKey();

Object model

The Text Analytics clientis a TextAnalyticsClient object that authenticates to Azure using your key, and provides
functions to accept text as single strings or as a batch. You can send text to the APl synchronously, or
asynchronously. The response object will contain the analysis information for each document you send.

If you're using version 3.x of the service, you can use an optional TextAnalyticsClientOptions instance to

https://docs.microsoft.com/en-us/nuget/consume-packages/install-use-packages-powershell#find-and-install-a-package
https://docs.microsoft.com/en-us/azure/key-vault/general/overview

initialize the client with various default settings (for example default language or country/region hint). You can

also authenticate using an Azure Active Directory token.

Code examples

e Sentiment analysis

e Opinion mining

e Language detection

e Named Entity Recognition
e Entity linking

e Key phrase extraction

Authenticate the client

e Version 3.1

e Version 3.0

Make sure your main method from earlier creates a new client object with your endpoint and credentials.

var client = new TextAnalyticsClient(endpoint, credentials);

Sentiment analysis

e \ersion 3.1

e \ersion 3.0

Create a new function called sentimentAnalysistxample() that takes the client that you created earlier, and call its
AnalyzeSentiment() function. The returned Response<DocumentSentiment> object will contain the sentiment label
and score of the entire input document, as well as a sentiment analysis for each sentence if successful. If there

was an error, it will throw a RequestFailedException .

static void SentimentAnalysisExample(TextAnalyticsClient client)

{
string inputText = "I had the best day of my life. I wish you were there with me.";
DocumentSentiment documentSentiment = client.AnalyzeSentiment(inputText);
Console.WriteLine($"Document sentiment: {documentSentiment.Sentiment}\n");
foreach (var sentence in documentSentiment.Sentences)
{
Console.WriteLine($"\tText: \"{sentence.Text}\"");
Console.WriteLine($"\tSentence sentiment: {sentence.Sentiment}");
Console.WriteLine($"\tPositive score: {sentence.ConfidenceScores.Positive:0.00}");
Console.WriteLine($"\tNegative score: {sentence.ConfidenceScores.Negative:0.00}");
Console.WriteLine($"\tNeutral score: {sentence.ConfidenceScores.Neutral:0.00}\n");
}
}

Output

Document sentiment: Positive

Text: "I had the best day of my life."
Sentence sentiment: Positive

Positive score: 1.00

Negative score: 0.00

Neutral score: 0.00

Text: "I wish you were there with me."
Sentence sentiment: Neutral

Positive score: 0.21

Negative score: 0.02

Neutral score: 0.77

Opinion mining

Create a new function called sentimentAnalysiswithOpinionMiningExample() that takes the client that you created
earlier, and call its AnalyzeSentimentBatch() function with IncludeopinionMining option in the
AnalyzeSentimentOptions bag. The returned AnalyzeSentimentResultCollection object will contain the collection
of AnalyzeSentimentResult in which represents Response<DocumentSentiment> . The difference between
SentimentAnalysis() and SentimentAnalysisWithOpinionMiningExample() is that the latter will contain

SentenceOpinion in each sentence, which shows an analyzed target and the related assessment(s). If there was

an error, it will throw a RequestFailedException .

static void SentimentAnalysisWithOpinionMiningExample(TextAnalyticsClient client)

{

var documents = new

{

List<string>

"The food and service were unacceptable, but the concierge were nice."

3

AnalyzeSentimentResultCollection reviews = client.AnalyzeSentimentBatch(documents, options: new

AnalyzeSentimentOptions()

{

IncludeOpinionMining = true

s

foreach (AnalyzeSentimentResult review in reviews)

{

Console.WriteLine($"Document sentiment: {review.DocumentSentiment.Sentiment}\n");
Console.WriteLine($"\tPositive score: {review.DocumentSentiment.ConfidenceScores.Positive:0.00}");

Console.WriteLine($"\tNegative score: {review.DocumentSentiment.ConfidenceScores.Negative:0.00}");

Console.WriteLine($"\tNeutral score: {review.DocumentSentiment.ConfidenceScores.Neutral:0.00}\n");
foreach (SentenceSentiment sentence in review.DocumentSentiment.Sentences)

{

Console.WriteLine($"\tText: \"{sentence.Text}\"");
Console.WriteLine($"\tSentence sentiment: {sentence.Sentiment}");

Console.WriteLine($"\tSentence positive score: {sentence.ConfidenceScores.Positive:0.00}");

Console.WriteLine($"\tSentence negative score: {sentence.ConfidenceScores.Negative:0.00}");

Console.WriteLine($"\tSentence neutral score: {sentence.ConfidenceScores.Neutral:0.00}\n");

foreach (SentenceOpinion sentenceOpinion in sentence.Opinions)

{

Console.
{sentenceOpinion.Target.

Console

{sentenceOpinion.Target.
Console.
{sentenceOpinion.Target.

foreach

{

WriteLine($"\tTarget: {sentenceOpinion.Target.Text}, Value:
Sentiment}");

WriteLine($"\tTarget positive score:

ConfidenceScores.Positive:0.00}");

WritelLine($"\tTarget negative score:
ConfidenceScores.Negative:0.00}");

(AssessmentSentiment assessment in sentenceOpinion.Assessments)

Console.WriteLine($"\t\tRelated Assessment: {assessment.Text}, Value:
{assessment.Sentiment}");

Console.WriteLine($"\t\tRelated Assessment positive score:
{assessment.ConfidenceScores.Positive:0.00}");

Console.WriteLine($"\t\tRelated Assessment negative score:
{assessment.ConfidenceScores.Negative:0.00}");

}

}

Console.WriteLine($"\n");

Output

Document sentiment: Positive

Positive score: 0.84
Negative score: 0.16
Neutral score: 0.00

Text: "The food and service were unacceptable, but the concierge were nice."
Sentence sentiment: Positive

Sentence positive score: 0.84

Sentence negative score: 0.16

Sentence neutral score: 0.00

Target: food, Value: Negative
Target positive score: 0.01
Target negative score: 0.99
Related Assessment: unacceptable, Value: Negative
Related Assessment positive score: 0.01
Related Assessment negative score: 0.99
Target: service, Value: Negative
Target positive score: 0.01
Target negative score: 0.99
Related Assessment: unacceptable, Value: Negative
Related Assessment positive score: 0.01
Related Assessment negative score: 0.99
Target: concierge, Value: Positive
Target positive score: 1.00
Target negative score: 0.00
Related Assessment: nice, Value: Positive
Related Assessment positive score: 1.00
Related Assessment negative score: 0.00

Press any key to exit.

Language detection

e Version 3.1

e Version 3.0

Create a new function called LanguageDetectionExample() that takes the client that you created earlier, and call its
DetectLanguage() function. The returned Response<DetectedLanguage> object will contain the detected language

along with its name and ISO-6391 code. If there was an error, it will throw a RequestFailedException .

TIP

In some cases it may be hard to disambiguate languages based on the input. You can use the countryHint parameter
to specify a 2-letter country/region code. By default the API is using the "US" as the default countryHint, to remove this
behavior you can reset this parameter by setting this value to empty string countryHint = "" . To set a different default,

set the TextAnalyticsClientOptions.DefaultCountryHint property and pass it during the client's initialization.

static void LanguageDetectionExample(TextAnalyticsClient client)

{
DetectedLanguage detectedLanguage = client.DetectLanguage("Ce document est rédigé en Francais.");
Console.WriteLine("Language:");
Console.WriteLine($"\t{detectedLanguage.Name},\tIS0-6391: {detectedLanguage.Iso6391Name}\n");

}

Output

Language:
French, IS0-6391: fr

Named Entity Recognition (NER)

e \ersion 3.1

e \ersion 3.0

Create a new function called EntityRecognitionExample() that takes the client that you created earlier, call its
RecognizeEntities() function and iterate through the results. The returned
Response<CategorizedEntityCollection> object will contain the collection of detected entities categorizedentity .

If there was an error, it will throw a RequestFailedException .

static void EntityRecognitionExample(TextAnalyticsClient client)
{
var response = client.RecognizeEntities("I had a wonderful trip to Seattle last week.");
Console.WriteLine("Named Entities:");
foreach (var entity in response.Value)
{
Console.WriteLine($"\tText: {entity.Text},\tCategory: {entity.Category},\tSub-Category:
{entity.SubCategory}");
Console.WriteLine($"\t\tScore: {entity.ConfidenceScore:F2},\tLength: {entity.Length},\tOffset:
{entity.Offset}\n");
3

Output

Named Entities:

Text: trip, Category: Event, Sub-Category:
Score: 0.61, Length: 4, Offset: 18

Text: Seattle, Category: Location, Sub-Category: GPE
Score: 0.82, Length: 7, Offset: 26

Text: last week, Category: DateTime, Sub-Category: DateRange
Score: 0.80, Length: 9, Offset: 34

Personally Identifiable Information (PIl) recognition

Create a new function called RecognizePIIExample() that takes the client that you created earlier, call its
RecognizePiiEntities() function and iterate through the results. The returned PiiEntityCollection represents

the list of detected PIl entities. If there was an error, it will throw a RequestFailedException .

static void RecognizePIIExample(TextAnalyticsClient client)
{

string document = "A developer with SSN 859-98-0987 whose phone number is 800-102-1100 is building tools
with our APIs.";

PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;

Console.WriteLine($"Redacted Text: {entities.RedactedText}");
if (entities.Count > 0)
{
Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
foreach (PiiEntity entity in entities)
{
Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory:
{entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");

}
}
else
{
Console.WriteLine("No entities were found.");
}
}
Output

Redacted Text: A developer with SSN *¥¥¥¥xi**xi* ywhose phone number is *¥¥**¥ik¥i**x jg puilding tools with
our APIs.

Recognized 2 PII entities:

Text: 859-98-0987, Category: U.S. Social Security Number (SSN), SubCategory: , Confidence score: 0.65
Text: 800-102-1100, Category: Phone Number, SubCategory: , Confidence score: 0.8

Entity linking

e \ersion 3.1

e \ersion 3.0

Create a new function called EntityLinkingExample() that takes the client that you created earlier, call its
RecognizeLinkedEntities() function and iterate through the results. The returned
Response<LinkedEntityCollection> object will contain the collection of detected entities LinkedEntity . If there

was an error, it will throw a RequestFailedException . Since linked entities are uniquely identified, occurrences of

the same entity are grouped under a Linkedentity objectas a list of LinkedEntityMatch objects.

static void EntityLinkingExample(TextAnalyticsClient client)
{
var response = client.RecognizelLinkedEntities(
"Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, " +
"to develop and sell BASIC interpreters for the Altair 8800. " +
"During his career at Microsoft, Gates held the positions of chairman, " +
"chief executive officer, president and chief software architect, " +
"while also being the largest individual shareholder until May 2014.");
Console.WriteLine("Linked Entities:");
foreach (var entity in response.Value)
{
Console.WriteLine($"\tName: {entity.Name},\tID: {entity.DataSourceEntityId},\tURL:
{entity.Url}\tData Source: {entity.DataSource}");
Console.WriteLine("\tMatches:");
foreach (var match in entity.Matches)

{
Console.WriteLine($"\t\tText: {match.Text}");
Console.WriteLine($"\t\tScore: {match.ConfidenceScore:F2}");
Console.WriteLine($"\t\tLength: {match.Length}");
Console.WriteLine($"\t\tOffset: {match.Offset}\n");

}

Output

Linked Entities:

Name: Microsoft,

Wikipedia
Matches:
Text: Microsoft
Score: 0.55
Length: 9
Offset: ©

Text: Microsoft
0.55
Length: 9
Offset: 150

Score:

Name: Bill Gates,
Wikipedia
Matches:
Text: Bill Gates
0.63
Length: 10
Offset: 25

Score:

Text: Gates
Score: 0.63
Length: 5

Offset: 161

Name: Paul Allen,

ID: Microsoft, URL: https://en.wikipedia.org/wiki/Microsoft Data Source:

ID: Bill Gates, URL: https://en.wikipedia.org/wiki/Bill_Gates Data Source:

ID: Paul Allen, URL: https://en.wikipedia.org/wiki/Paul_Allen Data Source:

Wikipedia
Matches:
Text: Paul Allen
Score: 0.60
Length: 10
Offset: 40
Name: April 4, 1ID: April 4, URL: https://en.wikipedia.org/wiki/April_4 Data Source:
Wikipedia
Matches:
Text: April 4
Score: 0.32
Length: 7
Offset: 54
Name: BASIC, ID: BASIC, URL: https://en.wikipedia.org/wiki/BASIC Data Source:
Wikipedia
Matches:
Text: BASIC
Score: 0.33
Length: 5
Offset: 89

Name: Altair 88090,
Source: Wikipedia
Matches:
Text: Altair 8800
0.88
Length: 11
Offset: 116

I

Score:

Key phrase extraction

e \ersion 3.1

e \ersion 3.0

D: Altair 8809, URL: https://en.wikipedia.org/wiki/Altair_8800 Data

Create a new function called keyPhraseExtractionExample() that takes the client that you created earlier, and call
its ExtractkeyPhrases() function. The returned <Response<keyPhraseCollection> object will contain the list of
detected key phrases. If there was an error, it will throw a RequestFailedException .

static void KeyPhraseExtractionExample(TextAnalyticsClient client)

{
var response = client.ExtractKeyPhrases("My cat might need to see a veterinarian.");
// Printing key phrases
Console.WriteLine("Key phrases:");
foreach (string keyphrase in response.Value)
{

Console.WriteLine($"\t{keyphrase}");

}

}

Output

Key phrases:
cat
veterinarian

Extract health entities

Caution

e To use the health operation, make sure your Azure resource is using the S standard pricing tier.

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The
below sample shows a basic example. You can find a more advanced sample on GitHub.

e Version 3.1

e Version 3.0

https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/textanalytics/Azure.AI.TextAnalytics/samples/Sample7_AnalyzeHealthcareEntities.md

static async Task healthExample(TextAnalyticsClient client)
{

string document = "Prescribed 100mg ibuprofen, taken twice daily.";

List<string> batchInput = new List<string>()
{
document
s
AnalyzeHealthcareEntitiesOperation healthOperation = await
client.StartAnalyzeHealthcareEntitiesAsync(batchInput);
await healthOperation.WaitForCompletionAsync();

await foreach (AnalyzeHealthcareEntitiesResultCollection documentsInPage in healthOperation.Value)

{

Console.WriteLine($"Results of Azure Text Analytics \"Healthcare Async\" Model, version: \"
{documentsInPage.ModelVersion}\"");
Console.WriteLine("");

foreach (AnalyzeHealthcareEntitiesResult entitiesInDoc in documentsInPage)

{
if (!entitiesInDoc.HasError)
{
foreach (var entity in entitiesInDoc.Entities)
{
// view recognized healthcare entities
Console.WriteLine($" Entity: {entity.Text}");
Console.WriteLine($" Category: {entity.Category}");
Console.WriteLine($" Offset: {entity.Offset}");
Console.WriteLine($" Length: {entity.Length}");
Console.WriteLine($" NormalizedText: {entity.NormalizedText}");
}

Console.WriteLine($" Found {entitiesInDoc.EntityRelations.Count} relations in the current
document:");
Console.WriteLine("");

// view recognized healthcare relations
foreach (HealthcareEntityRelation relations in entitiesInDoc.EntityRelations)

{
Console.WriteLine($" Relation: {relations.RelationType}");
Console.WriteLine($" For this relation there are {relations.Roles.Count} roles");
// view relation roles
foreach (HealthcareEntityRelationRole role in relations.Roles)
{
Console.WriteLine($" Role Name: {role.Name}");
Console.WriteLine($" Associated Entity Text: {role.Entity.Text}");
Console.WriteLine($" Associated Entity Category: {role.Entity.Category}");
Console.WriteLine("");
}
Console.WriteLine("");
}
}
else
{
Console.WriteLine(" Error!");
Console.WriteLine($" Document error code: {entitiesInDoc.Error.ErrorCode}.");
Console.WriteLine($" Message: {entitiesInDoc.Error.Message}");
}

Console.WriteLine("");

Results of Azure Text Analytics "Healthcare Async" Model, version: "2021-05-15"

Entity: 100mg

Category: Dosage

Offset: 11

Length: 5

NormalizedText:

Entity: ibuprofen
Category: MedicationName
Offset: 17

Length: 9

NormalizedText: ibuprofen
Entity: twice daily
Category: Frequency
Offset: 34

Length: 11
NormalizedText:

Found 2 relations in the current document:

Relation: DosageOfMedication

For this relation there are 2 roles
Role Name: Dosage
Associated Entity Text: 1eemg
Associated Entity Category: Dosage

Role Name: Medication
Associated Entity Text: ibuprofen
Associated Entity Category: MedicationName

Relation: FrequencyOfMedication

For this relation there are 2 roles
Role Name: Medication
Associated Entity Text: ibuprofen
Associated Entity Category: MedicationName

Role Name: Frequency
Associated Entity Text: twice daily
Associated Entity Category: Frequency

Use the API asynchronously with the Analyze operation

e \ersion 3.1

e \ersion 3.0

You can use the Analyze operation to perform asynchronous batch requests for: NER, key phrase extraction,
sentiment analysis, and Pl detection. The below sample shows a basic example on one operation. You can find a
more advanced sample on GitHub.

Caution

e To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Add the following using statements to your C# file.

using System.Threading.Tasks;
using System.Collections.Generic;
using System.Ling;

Create a new function called AnalyzeoperationExample() that takes the client that you created earlier, and call its
StartAnalyzeBatchActionsAsync() function. The returned operation will contain an AnalyzeBatchActionsResult

object. As it is a Long Running Operation, await on the operation.WaitForCompletionAsync() for the value to be

https://github.com/Azure/azure-sdk-for-net/blob/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples/Sample_AnalyzeActions.md

updated. Once the waitForcompletionAsync() finishes, the collection should be updated in the operation.value .

If there was an error, it will throw a RequestFailedException .

static async Task AnalyzeOperationExample(TextAnalyticsClient client)
{
string inputText = "Microsoft was founded by Bill Gates and Paul Allen.";

var batchDocuments = new List<string> { inputText };

TextAnalyticsActions actions = new TextAnalyticsActions()

{
RecognizeEntitiesActions = new List<RecognizeEntitiesAction>() { new RecognizeEntitiesAction()
s
ExtractKeyPhrasesActions = new List<ExtractKeyPhrasesAction>() { new ExtractKeyPhrasesAction()
s
DisplayName = "Analyze Operation Quick Start Example"
s

AnalyzeActionsOperation operation = await client.StartAnalyzeActionsAsync(batchDocuments, actions);

await operation.WaitForCompletionAsync();

Console.WriteLine($"Status: {operation.Status}");
Console.WriteLine($"Created On: {operation.CreatedOn}");
Console.WriteLine($"Expires On: {operation.ExpiresOn}");
Console.WriteLine($"Last modified: {operation.LastModified}");
if (!string.IsNullOrEmpty(operation.DisplayName))
Console.WriteLine($"Display name: {operation.DisplayName}");
//Console.WriteLine($"Total actions: {operation.TotalActions}");
Console.WriteLine($" Succeeded actions: {operation.ActionsSucceeded}");
Console.WriteLine($" Failed actions: {operation.ActionsFailed}");
Console.WriteLine($" 1In progress actions: {operation.ActionsInProgress}");

await foreach (AnalyzeActionsResult documentsInPage in operation.Value)

{
RecognizeEntitiesResultCollection entitiesResult =
documentsInPage.RecognizeEntitiesResults.FirstOrDefault().DocumentsResults;
ExtractKeyPhrasesResultCollection keyPhrasesResults =
documentsInPage.ExtractKeyPhrasesResults.FirstOrDefault().DocumentsResults;

Console.WriteLine("Recognized Entities");

foreach (RecognizeEntitiesResult result in entitiesResult)

{
Console.WriteLine($" Recognized the following {result.Entities.Count} entities:");
foreach (CategorizedEntity entity in result.Entities)
{
Console.WriteLine($" Entity: {entity.Text}");
Console.WriteLine($" Category: {entity.Category}");
Console.WriteLine($" Offset: {entity.Offset}");
Console.WriteLine($" Length: {entity.Length}");
Console.WriteLine($" ConfidenceScore: {entity.ConfidenceScore}");
Console.WriteLine($" SubCategory: {entity.SubCategory}");
}
Console.WriteLine("");
}

Console.WriteLine("Key Phrases");

foreach (ExtractKeyPhrasesResult documentResults in keyPhrasesResults)
{
Console.WriteLine($" Recognized the following {documentResults.KeyPhrases.Count}
Keyphrases:");

foreach (string keyphrase in documentResults.KeyPhrases)

-

Console.WriteLine($" {keyphrase}");
}

Console.WriteLine("");

After you add this example to your application, call in your main() method using await . Because the Analyze

operation is asynchronous, you will need to update your Main() method to the async Task type.

static async Task Main(string[] args)

{
var client = new TextAnalyticsClient(endpoint, credentials);
await AnalyzeOperationExample(client).ConfigureAwait(false);
}
Output

Status: succeeded
Created On: 3/10/2021 2:25:01 AM +00:00
Expires On: 3/11/2021 2:25:01 AM +00:00
Last modified: 3/10/2021 2:25:05 AM +00:00
Display name: Analyze Operation Quick Start Example
Total actions: 1
Succeeded actions: 1
Failed actions: @
In progress actions: @
Recognized Entities
Recognized the following 3 entities:
Entity: Microsoft
Category: Organization
Offset: @
ConfidenceScore: 0.83
SubCategory:
Entity: Bill Gates
Category: Person
Offset: 25
ConfidenceScore: 0.85
SubCategory:
Entity: Paul Allen
Category: Person
Offset: 40
ConfidenceScore: 0.9
SubCategory:

IMPORTANT

® The latest stable version of the Text Analytics APl is 3.1 .

® The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For
production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See
the reference documentation below. If you want to use Text Analytics for health or Asynchronous operations, see the
examples on Github for C#, Python or Java

e \ersion 3.1

e \ersion 3.0

Reference documentation | Library source code | Package | Samples

https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://docs.microsoft.com/en-us/java/api/overview/azure/ai-textanalytics-readme?preserve-view=true&view=azure-java-preview
https://github.com/Azure/azure-sdk-for-java/tree/main/sdk/textanalytics/azure-ai-textanalytics
https://mvnrepository.com/artifact/com.azure/azure-ai-textanalytics/5.1.0
https://github.com/Azure/azure-sdk-for-java/tree/main/sdk/textanalytics/azure-ai-textanalytics/src/samples

Prerequisites

e Azure subscription - Create one for free
e Java Development Kit (JDK) with version 8 or above
e Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key
and endpoint. After it deploys, click Go to resource.
o You will need the key and endpoint from the resource you create to connect your application to the
Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.
o You can use the free pricing tier (Fe) to try the service, and upgrade later to a paid tier for production.

e To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

Setting up
Add the client library

e \ersion 3.1

e \ersion 3.0

Create a Maven project in your preferred IDE or development environment. Then add the following dependency
to your project's pom.xml/file. You can find the implementation syntax for other build tools online.

<dependencies>
<dependency>
<groupId>com.azure</groupIld>
<artifactId>azure-ai-textanalytics</artifactId>
<version>5.1.0</version>
</dependency>
</dependencies>

Create a Java file named TextAnalyticssamples.java . Open the file and add the following import statements:

e \ersion 3.1 preview

e \ersion 3.0

import com.azure.ai.textanalytics.TextAnalyticsAsyncClient;
import com.azure.core.credential.AzureKeyCredential;

import com.azure.ai.textanalytics.models.*;

import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

import java.util.Arraylist;
import java.util.list;
import java.util.concurrent.TimeUnit;

import java.util.Arrays;

import com.azure.core.util.Context;

import com.azure.core.util.polling.SyncPoller;

import com.azure.ai.textanalytics.util.AnalyzeHealthcareEntitiesResultCollection;
import com.azure.ai.textanalytics.util.AnalyzeHealthcareEntitiesPagedIterable;

In the java file, add a new class and add your Azure resource's key and endpoint as shown below.

https://azure.microsoft.com/free/cognitive-services
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://mvnrepository.com/artifact/com.azure/azure-ai-textanalytics/5.1.0-beta.7

IMPORTANT

Go to the Azure portal. If the Text Analytics resource you created in the Prerequisites section deployed successfully, click
the Go to Resource button under Next Steps. You can find your key and endpoint in the resource's key and
endpoint page, under resource management.

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

public class TextAnalyticsSamples {
private static String KEY = "<replace-with-your-text-analytics-key-here>";
private static String ENDPOINT = "<replace-with-your-text-analytics-endpoint-here>";

Add the following main method to the class. You will define the methods called here later.

e \ersion 3.1

e \ersion 3.0

public static void main(String[] args) {
//You will create these methods later in the quickstart.
TextAnalyticsClient client = authenticateClient(KEY, ENDPOINT);

sentimentAnalysisWithOpinionMiningExample(client)
detectLanguageExample(client);
recognizeEntitiesExample(client);
recognizelLinkedEntitiesExample(client);
recognizePiiEntitiesExample(client);
extractKeyPhrasesExample(client);

Object model

The Text Analytics clientis a TextAnalyticsClient object that authenticates to Azure using your key, and provides
functions to accept text as single strings or as a batch. You can send text to the API synchronously, or

asynchronously. The response object will contain the analysis information for each document you send.

Code examples

Authenticate the client

e Sentiment Analysis

e Opinion mining

e Language detection

e Named Entity recognition
e Entity linking

e Key phrase extraction

Authenticate the client

Create a method to instantiate the TextAnalyticsclient object with the key and endpoint for your Text Analytics
resource. This example is the same for versions 3.0 and 3.1 of the API.

https://docs.microsoft.com/en-us/azure/key-vault/general/overview

static TextAnalyticsClient authenticateClient(String key, String endpoint) {
return new TextAnalyticsClientBuilder()
.credential(new AzureKeyCredential(key))
.endpoint(endpoint)
.buildClient();

In your program's main() method, call the authentication method to instantiate the client.

Sentiment analysis

e \ersion 3.1

e \ersion 3.0

NOTE

In version 3.1 :

® Sentiment Analysis includes Opinion Mining analysis which is optional flag.

® Opinion Mining contains aspect and opinion level sentiment.

Create a new function called sentimentAnalysistxample() that takes the client that you created earlier, and call its
analyzeSentiment() function. The returned AnalyzeSentimentResult object will contain documentsentiment and

sentenceSentiments if successful, Or an errorMessage if not.

static void sentimentAnalysisExample(TextAnalyticsClient client)

{
// The text that need be analyzed.
String text = "I had the best day of my life. I wish you were there with me.";
DocumentSentiment documentSentiment = client.analyzeSentiment(text);
System.out.printf(
"Recognized document sentiment: %s, positive score: %s, neutral score: %s, negative score: %s.%n",
documentSentiment.getSentiment(),
documentSentiment.getConfidenceScores().getPositive(),
documentSentiment.getConfidenceScores().getNeutral(),
documentSentiment.getConfidenceScores().getNegative());
for (SentenceSentiment sentenceSentiment : documentSentiment.getSentences()) {
System.out.printf(
"Recognized sentence sentiment: %s, positive score: %s, neutral score: %s, negative score:
%s.%n",
sentenceSentiment.getSentiment(),
sentenceSentiment.getConfidenceScores().getPositive(),
sentenceSentiment.getConfidenceScores().getNeutral(),
sentenceSentiment.getConfidenceScores().getNegative());
}
}
}
Output

Recognized document sentiment: positive, positive score: 1.0, neutral score: 0.0, negative score: 0.0.
Recognized sentence sentiment: positive, positive score: 1.0, neutral score: 0.0, negative score: 0.0.
Recognized sentence sentiment: neutral, positive score: 0.21, neutral score: 0.77, negative score: 0.02.

Opinion mining

To perform sentiment analysis with opinion mining, create a new function called
sentimentAnalysisWithOpinionMiningExample() that takes the client that you created earlier, and call its
analyzeSentiment() function with setting option object AnalyzeSentimentoptions . The returned

AnalyzeSentimentResult object will contain documentSentiment and sentenceSentiments if successful, or an

errorMessage if not

static void sentimentAnalysisWithOpinionMiningExample(TextAnalyticsClient client)
{
// The document that needs be analyzed.
String document = "Bad atmosphere. Not close to plenty of restaurants, hotels, and transit! Staff are
not friendly and helpful.";

System.out.printf("Document = %s%n", document);

AnalyzeSentimentOptions options = new AnalyzeSentimentOptions().setIncludeOpinionMining(true);
final DocumentSentiment documentSentiment = client.analyzeSentiment(document, "en", options);
SentimentConfidenceScores scores = documentSentiment.getConfidenceScores();
System.out.printf(
"Recognized document sentiment: %s, positive score: %f, neutral score: %f, negative score:
%f.%n",
documentSentiment.getSentiment(), scores.getPositive(), scores.getNeutral(),
scores.getNegative());

documentSentiment.getSentences().forEach(sentenceSentiment -> {
SentimentConfidenceScores sentenceScores = sentenceSentiment.getConfidenceScores();
System.out.printf("\tSentence sentiment: %s, positive score: %f, neutral score: %f, negative score:
%f.%n",
sentenceSentiment.getSentiment(), sentenceScores.getPositive(),
sentenceScores.getNeutral(), sentenceScores.getNegative());
sentenceSentiment.getOpinions().forEach(opinion -> {
TargetSentiment targetSentiment = opinion.getTarget();
System.out.printf("\t\tTarget sentiment: %s, target text: %s%n",
targetSentiment.getSentiment(),
targetSentiment.getText());
for (AssessmentSentiment assessmentSentiment : opinion.getAssessments()) {
System.out.printf("\t\t\t'%s' assessment sentiment because of \"%s\". Is the assessment
negated: %s.%n",
assessmentSentiment.getSentiment(), assessmentSentiment.getText(),
assessmentSentiment.isNegated());
¥
3
1

Output

Document = Bad atmosphere. Not close to plenty of restaurants, hotels, and transit! Staff are not friendly
and helpful.
Recognized document sentiment: negative, positive score: ©0.010000, neutral score: 0.140000, negative score:
0.850000.
Sentence sentiment: negative, positive score: ©0.000000, neutral score: 0.000000, negative score: 1.000000.
Target sentiment: negative, target text: atmosphere
'negative’ assessment sentiment because of "bad". Is the assessment negated: false.
Sentence sentiment: negative, positive score: 0.020000, neutral score: 0.440000, negative score: 0.540000.
Sentence sentiment: negative, positive score: ©0.000000, neutral score: 0.000000, negative score: 1.000000.
Target sentiment: negative, target text: Staff
'negative’ assessment sentiment because of "friendly". Is the assessment negated: true.
'negative' assessment sentiment because of "helpful". Is the assessment negated: true.

Language detection

Create a new function called detectLanguageExample() that takes the client that you created earlier, and call its
detectLanguage() function. The returned DetectLanguageResult object will contain a primary language detected,
a list of other languages detected if successful, or an errorMessage if not. This example is the same for versions
3.0 and 3.1 of the API.

TIP

In some cases it may be hard to disambiguate languages based on the input. You can use the countryHint parameter
to specify a 2-letter country code. By default the API is using the "US" as the default countryHint, to remove this behavior
you can reset this parameter by setting this value to empty string countryHint = "" . To set a different default, set the

TextAnalyticsClientOptions.DefaultCountryHint property and pass it during the client's initialization.

static void detectLanguageExample(TextAnalyticsClient client)

{
// The text that need be analyzed.
String text = "Ce document est rédigé en Franc¢ais.";

DetectedLanguage detectedLanguage = client.detectLanguage(text);
System.out.printf("Detected primary language: %s, ISO 6391 name: %s, score: %.2f.%n",
detectedLanguage.getName(),

detectedLanguage.getIso6391Name(),
detectedLanguage.getConfidenceScore());

Output

Detected primary language: French, ISO 6391 name: fr, score: 1.00.

Named Entity Recognition (NER)

e Version 3.1

e Version 3.0

NOTE

In version 3.1 :

® NER includes separate methods for detecting personal information.

® Entity linking is a separate request than NER.

Create a new function called recognizeEntitiestxample() that takes the client that you created earlier, and call its
recognizeEntities() function. The returned categorizedEntityCollection object will contain a list of

CategorizedEntity if successful, or an errorMessage if not.

static void recognizeEntitiesExample(TextAnalyticsClient client)
{

// The text that need be analyzed.

String text = "I had a wonderful trip to Seattle last week.";

for (CategorizedEntity entity : client.recognizeEntities(text)) {
System.out.printf(
"Recognized entity: %s, entity category: %s, entity sub-category: %s, score: %s, offset: ¥%s,
length: %s.%n",
entity.getText(),
entity.getCategory(),
entity.getSubcategory(),
entity.getConfidenceScore(),
entity.getOffset(),
entity.getLength());

Output

Recognized entity: trip, entity category: Event, entity sub-category: null, score: 0.61, offset: 8, length:
4.

Recognized entity: Seattle, entity category: Location, entity sub-category: GPE, score: ©0.82, offset: 16,
length: 7.

Recognized entity: last week, entity category: DateTime, entity sub-category: DateRange, score: 0.8, offset:
24, length: 9.

Personally Identifiable Information (PIl) recognition

Create a new function called recognizepiiEntitiesExample() that takes the client that you created earlier, and call
its recognizePiiEntities() function.The returned pPiiEntityCollection object will contain a listof piiEntity if
successful, or an errorMessage if not. It will also contain the redacted text, which consists of the input text with

all identifiable entities replaced with #x*xx

static void recognizePiiEntitiesExample(TextAnalyticsClient client)

{
// The text that need be analyzed.
String document = "My SSN is 859-98-0987";
PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
piiEntityCollection.forEach(entity -> System.out.printf(
"Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory:
%s,"
+ " confidence score: %f.%n",
entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
}
Output

Redacted Text: My SSN is *¥¥¥xikxikx
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: U.S. Social Security
Number (SSN), entity subcategory: null, confidence score: ©.650000.

Entity linking

e \ersion 3.1

e \ersion 3.0

Create a new function called recognizeLinkedEntitiesExample() that takes the client that you created earlier, and
call its recognizeLinkedEntities() function.The returned LinkedEntityCollection object will contain a list of
LinkedEntity if successful, or an errormessage if not. Since linked entities are uniquely identified, occurrences

of the same entity are grouped under a LinkedEntity objectas a list of LinkedEntityMatch objects.

static void recognizelinkedEntitiesExample(TextAnalyticsClient client)

{
// The text that need be analyzed.
String text = "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, " +
"to develop and sell BASIC interpreters for the Altair 8800. " +
"During his career at Microsoft, Gates held the positions of chairman, " +
"chief executive officer, president and chief software architect, " +
"while also being the largest individual shareholder until May 2014.";
System.out.printf("Linked Entities:%n");
for (LinkedEntity linkedEntity : client.recognizelinkedEntities(text)) {
System.out.printf("Name: %s, ID: %s, URL: %s, Data Source: %s.%n",
linkedEntity.getName(),
linkedEntity.getDataSourceEntityId(),
linkedEntity.getUrl(),
linkedEntity.getDataSource());
System.out.printf("Matches:%n");
for (LinkedEntityMatch linkedEntityMatch : linkedEntity.getMatches()) {
System.out.printf("Text: %s, Score: %.2f, Offset: %s, Length: %s%n",
linkedEntityMatch.getText(),
linkedEntityMatch.getConfidenceScore(),
linkedEntityMatch.getOffset(),
linkedEntityMatch.getLength());
}
}
}
Output

Linked Entities:

Name: Microsoft, ID: Microsoft, URL: https://en.wikipedia.org/wiki/Microsoft, Data Source: Wikipedia.
Matches:

Text: Microsoft, Score: ©.55, Offset: 9, Length: @

Text: Microsoft, Score: 0.55, Offset: 9, Length: 150

Name: Bill Gates, ID: Bill Gates, URL: https://en.wikipedia.org/wiki/Bill_Gates, Data Source: Wikipedia.
Matches:

Text: Bill Gates, Score: 0.63, Offset: 10, Length: 25

Text: Gates, Score: 0.63, Offset: 5, Length: 161

Name: Paul Allen, ID: Paul Allen, URL: https://en.wikipedia.org/wiki/Paul_Allen, Data Source: Wikipedia.
Matches:

Text: Paul Allen, Score: 0.60, Offset: 10, Length: 40

Name: April 4, ID: April 4, URL: https://en.wikipedia.org/wiki/April_4, Data Source: Wikipedia.

Matches:

Text: April 4, Score: 0.32, Offset: 7, Length: 54

Name: BASIC, ID: BASIC, URL: https://en.wikipedia.org/wiki/BASIC, Data Source: Wikipedia.

Matches:

Text: BASIC, Score: 0.33, Offset: 5, Length: 89

Name: Altair 8800, ID: Altair 8800, URL: https://en.wikipedia.org/wiki/Altair_8800, Data Source: Wikipedia.
Matches:

Text: Altair 8800, Score: 0.88, Offset: 11, Length: 116

Key phrase extraction

Create a new function called extractkeyPhrasestxample() that takes the client that you created earlier, and call its
extractKeyPhrases() function. The returned ExtractkeyPhraseResult object will contain a list of key phrases if
successful, or an errorMessage if not. This example is the same for version 3.0 and 3.1 of the API.

static void extractKeyPhrasesExample(TextAnalyticsClient client)

{
// The text that need be analyzed.
String text = "My cat might need to see a veterinarian.";
System.out.printf("Recognized phrases: %n");
for (String keyPhrase : client.extractKeyPhrases(text)) {

System.out.printf("%s%n", keyPhrase);

}

}

Output

Recognized phrases:
cat
veterinarian

Extract health entities

e \ersion 3.1

e \ersion 3.0

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The
below sample shows a basic example. You can find a more advanced sample on GitHub.

https://github.com/Azure/azure-sdk-for-java/blob/main/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics/lro/AnalyzeHealthcareEntities.java

static void healthExample(TextAnalyticsClient client){
List<TextDocumentInput> documents = Arrays.asList(
new TextDocumentInput("e",
"Prescribed 10@mg ibuprofen, taken twice daily."));

AnalyzeHealthcareEntitiesOptions options = new
AnalyzeHealthcareEntitiesOptions().setIncludeStatistics(true);

SyncPoller<AnalyzeHealthcareEntitiesOperationDetail, AnalyzeHealthcareEntitiesPagedIterable>
syncPoller = client.beginAnalyzeHealthcareEntities(documents, options, Context.NONE);

System.out.printf("Poller status: %s.%n", syncPoller.poll().getStatus());
syncPoller.waitForCompletion();

// Task operation statistics

AnalyzeHealthcareEntitiesOperationDetail operationResult = syncPoller.poll().getValue();

System.out.printf("Operation created time: %s, expiration time: %s.%n",
operationResult.getCreatedAt(), operationResult.getExpiresAt());

System.out.printf("Poller status: %s.%n", syncPoller.poll().getStatus());

for (AnalyzeHealthcareEntitiesResultCollection resultCollection : syncPoller.getFinalResult()) {
// Model version
System.out.printf(
"Results of Azure Text Analytics \"Analyze Healthcare Entities\" Model, version: %s%n",
resultCollection.getModelVersion());

for (AnalyzeHealthcareEntitiesResult healthcareEntitiesResult : resultCollection) {
System.out.println("Document ID = " + healthcareEntitiesResult.getId());
System.out.println("Document entities: ");
// Recognized healthcare entities
for (HealthcareEntity entity : healthcareEntitiesResult.getEntities()) {
System.out.printf(
"\tText: %s, normalized name: %s, category: %s, subcategory: %s, confidence score:

%f.%n",
entity.getText(), entity.getNormalizedText(), entity.getCategory(),
entity.getSubcategory(), entity.getConfidenceScore());
}
// Recognized healthcare entity relation groups
for (HealthcareEntityRelation entityRelation : healthcareEntitiesResult.getEntityRelations()) {
System.out.printf("Relation type: %s.%n", entityRelation.getRelationType());
for (HealthcareEntityRelationRole role : entityRelation.getRoles()) {
HealthcareEntity entity = role.getEntity();
System.out.printf("\tEntity text: %s, category: %s, role: %s.%n",
entity.getText(), entity.getCategory(), role.getName());
}
}
}
}
}

output

Poller status: IN_PROGRESS.
Operation created time: 2021-07-20T19:45:50Z, expiration time: 2021-07-21T19:45:50Z.
Poller status: SUCCESSFULLY_COMPLETED.
Results of Azure Text Analytics "Analyze Healthcare Entities" Model, version: 2021-05-15
Document ID = @
Document entities:
Text: 100mg, normalized name: null, category: Dosage, subcategory: null, confidence score: 1.000000.
Text: ibuprofen, normalized name: ibuprofen, category: MedicationName, subcategory: null, confidence score:
1.000000.
Text: twice daily, normalized name: null, category: Frequency, subcategory: null, confidence score:
1.000000.
Relation type: DosageOfMedication.
Entity text: 1e0@mg, category: Dosage, role: Dosage.
Entity text: ibuprofen, category: MedicationName, role: Medication.
Relation type: FrequencyOfMedication.
Entity text: ibuprofen, category: MedicationName, role: Medication.
Entity text: twice daily, category: Frequency, role: Frequency.

Use the API asynchronously with the Analyze operation

e \ersion 3.1

e \ersion 3.0

You can use the Analyze operation to perform asynchronous batch requests for: NER, key phrase extraction,
sentiment analysis, and Pl detection. The below sample shows a basic example on one operation. You can find a
more advanced sample on GitHub

Caution

e To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Create a new function called analyzeBatchActionsExample() , wWhich calls the beginAnalyzeBatchActions()

function. The result will be a long running operation which will be polled for results.

static void analyzeActionsExample(TextAnalyticsClient client){
List<TextDocumentInput> documents = new ArrayList<>();
documents.add(new TextDocumentInput("e", "Microsoft was founded by Bill Gates and Paul Allen."));

SyncPoller<AnalyzeActionsOperationDetail, AnalyzeActionsResultPagedIterable> syncPoller =
client.beginAnalyzeActions(documents,
new TextAnalyticsActions().setDisplayName("Example analyze task")
.setRecognizeEntitiesActions(new RecognizeEntitiesAction())
.setExtractKeyPhrasesActions(
new ExtractKeyPhrasesAction().setModelVersion("latest")),
new AnalyzeActionsOptions().setIncludeStatistics(false),
Context.NONE);

// Task operation statistics details
while (syncPoller.poll().getStatus() == LongRunningOperationStatus.IN_PROGRESS) {
final AnalyzeActionsOperationDetail operationDetail = syncPoller.poll().getValue();
System.out.printf("Action display name: %s, Successfully completed actions: %d, in-process
actions: %d,"

+ " failed actions: %d, total actions: %d%n",
operationDetail.getDisplayName(), operationDetail.getSucceededCount(),
operationDetail.getInProgressCount(), operationDetail.getFailedCount(),
operationDetail.getTotalCount());

syncPoller.waitForCompletion();
Iterable<PagedResponse<AnalyzeActionsResult>> pagedResults =

syncPoller.getFinalResult().iterableByPage();
for (PagedResponse<AnalyzeActionsResult> perPage : pagedResults) {

https://github.com/Azure/azure-sdk-for-net/blob/master/sdk/textanalytics/Azure.AI.TextAnalytics/samples/Sample_AnalyzeActions.md

System.out.printf("Response code: %d, Continuation Token: %s.%n", perPage.getStatusCode(),
perPage.getContinuationToken());
for (AnalyzeActionsResult actionsResult : perPage.getElements()) {
System.out.println("Entities recognition action results:");
for (RecognizeEntitiesActionResult actionResult :
actionsResult.getRecognizeEntitiesResults()) {
if (lactionResult.isError()) {
for (RecognizeEntitiesResult documentResult : actionResult.getDocumentsResults()) {
if (!documentResult.isError()) {
for (CategorizedEntity entity : documentResult.getEntities()) {
System.out.printf(
"\tText: %s, category: %s, confidence score: %f.%n",
entity.getText(), entity.getCategory(),
entity.getConfidenceScore());
}
} else {
System.out.printf("\tCannot recognize entities. Error: %s%n",
documentResult.getError().getMessage());

}
} else {

System.out.printf("\tCannot execute Entities Recognition action. Error: %s%n",
actionResult.getError().getMessage());

System.out.println("Key phrases extraction action results:");
for (ExtractKeyPhrasesActionResult actionResult :
actionsResult.getExtractKeyPhrasesResults()) {
if (lactionResult.isError()) {
for (ExtractKeyPhraseResult documentResult : actionResult.getDocumentsResults()) {
if (!documentResult.isError()) {
System.out.println("\tExtracted phrases:");
for (String keyPhrases : documentResult.getKeyPhrases()) {
System.out.printf("\t\t%s.%n", keyPhrases);
}
} else {
System.out.printf("\tCannot extract key phrases. Error: %s%n",
documentResult.getError().getMessage());

}
} else {
System.out.printf("\tCannot execute Key Phrases Extraction action. Error: %s%n",
actionResult.getError().getMessage());

After you add this example to your application, call it in your main() method.

analyzeBatchActionsExample(client);

Output

Action display name: Example analyze task, Successfully completed actions: 1, in-process actions: 1, failed
actions: @, total actions: 2
Response code: 200, Continuation Token: null.
Entities recognition action results:
Text: Microsoft, category: Organization, confidence score: 1.000000.
Text: Bill Gates, category: Person, confidence score: 1.000000.
Text: Paul Allen, category: Person, confidence score: 1.000000.
Key phrases extraction action results:
Extracted phrases:
Bill Gates.
Paul Allen.
Microsoft.

You can also use the Analyze operation to perform NER, key phrase extraction, sentiment analysis and detect PII.
See the Analyze sample on GitHub.

IMPORTANT
® The latest stable version of the Text Analytics APl is 3.1 .
o Be sure to only follow the instructions for the version you are using.
® The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For

production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See
the reference documentation below.

® You can also run this version of the Text Analytics client library in your browser.

e \ersion 3.1

e \ersion 3.0

v3 Reference documentation | v3 Library source code | v3 Package (NPM) | v3 Samples

Prerequisites

e Azure subscription - Create one for free
e The current version of Node,js.

e Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key
and endpoint. After it deploys, click Go to resource.

o You will need the key and endpoint from the resource you create to connect your application to the
Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

o You can use the free pricing tier (Fo) to try the service, and upgrade later to a paid tier for production.

e To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

Setting up
Create a new Node.js application

In a console window (such as cmd, PowerShell, or Bash), create a new directory for your app, and navigate to it.

mkdir myapp

cd myapp

Run the npm init command to create a node application with a package.json file.

https://github.com/Azure/azure-sdk-for-java/blob/master/sdk/textanalytics/azure-ai-textanalytics/src/samples/java/com/azure/ai/textanalytics/lro/AnalyzeActionsAsync.java
https://github.com/Azure/azure-sdk-for-js/blob/master/documentation/Bundling.md
https://docs.microsoft.com/en-us/javascript/api/overview/azure/ai-text-analytics-readme?preserve-view=true&view=azure-node-preview
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics
https://www.npmjs.com/package/@azure/ai-text-analytics/v/5.1.0
https://github.com/Azure/azure-sdk-for-js/tree/main/sdk/textanalytics/ai-text-analytics/samples
https://azure.microsoft.com/free/cognitive-services
https://nodejs.org/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics

npm init

Install the client library

e Version 3.1

e Version 3.0

Install the @azure/ai-text-analytics NPM packages:

npm install --save @azure/ai-text-analytics@5.1.0

TIP

Want to view the whole quickstart code file at once? You can find it on GitHub, which contains the code examples in this
quickstart.

Your app's package.json file will be updated with the dependencies. Create a file named index.js and add the
following:

e \ersion 3.1

e \ersion 3.0

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

Create variables for your resource's Azure endpoint and key.

IMPORTANT

Go to the Azure portal. If the Text Analytics resource you created in the Prerequisites section deployed successfully, click
the Go to Resource button under Next Steps. You can find your key and endpoint in the resource's key and
endpoint page, under resource management.

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

const key = '<paste-your-text-analytics-key-here>";
const endpoint = '<paste-your-text-analytics-endpoint-here>’;

Object model

The Text Analytics clientis a TextAnalyticsClient object that authenticates to Azure using your key. The client
provides several methods for analyzing text, as a single string, or a batch.

Text is sent to the APl as a list of documents , which are dictionary objects containing a combination of id
text ,and language attributes depending on the method used. The text attribute stores the text to be
analyzed in the origin language ,and the id can be any value.

The response object is a list containing the analysis information for each document.

https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/javascript/TextAnalytics/text-analytics-v3-client-library.js
https://docs.microsoft.com/en-us/azure/key-vault/general/overview

Code examples

o Client Authentication

e Sentiment Analysis

e Opinion mining

e Language detection

e Named Entity recognition

e Entity linking

e Personally Identifiable Information

e Key phrase extraction

Authenticate the client

e Version 3.1

e Version 3.0

Create a new TextAnalyticsClient object with your key and endpoint as parameters.

const textAnalyticsClient = new TextAnalyticsClient(endpoint, new AzureKeyCredential(key));

Sentiment analysis

e \ersion 3.1

e \ersion 3.0

Create an array of strings containing the document you want to analyze. Call the client's analyzeSentiment()
method and get the returned sentimentBatchResult object. Iterate through the list of results, and print each
document's ID, document level sentiment with confidence scores. For each document, result contains sentence
level sentiment along with offsets, length, and confidence scores.

async function sentimentAnalysis(client){

const sentimentInput = [
"I had the best day of my life. I wish you were there with me."
1

const sentimentResult = await client.analyzeSentiment(sentimentInput);

sentimentResult.forEach(document => {
console.log(ID: ${document.id});
console.log(\tDocument Sentiment: ${document.sentiment});
console.log(" \tDocument Scores:);
console.log(\t\tPositive: ${document.confidenceScores.positive.toFixed(2)} \tNegative:
${document.confidenceScores.negative.toFixed(2)} \tNeutral:
${document.confidenceScores.neutral.toFixed(2)});
console.log(\tSentences Sentiment(${document.sentences.length}):);
document.sentences.forEach(sentence => {
console.log (" \t\tSentence sentiment: ${sentence.sentiment}")
console.log(\t\tSentences Scores:");
console.log(\t\tPositive: ${sentence.confidenceScores.positive.toFixed(2)} \tNegative:
${sentence.confidenceScores.negative.toFixed(2)} \tNeutral:
${sentence.confidenceScores.neutral.toFixed(2)});
1)
s
}
sentimentAnalysis(textAnalyticsClient)

Run your code with node index.js inyour console window.

Output

ID: ©
Document Sentiment: positive
Document Scores:
Positive: 1.00 Negative: ©.00 Neutral: 0.00
Sentences Sentiment(2):
Sentence sentiment: positive
Sentences Scores:
Positive: 1.00 Negative: ©.00 Neutral: 0.00
Sentence sentiment: neutral
Sentences Scores:
Positive: ©.21 Negative: 0.02 Neutral: 0.77

Opinion mining
e Version 3.1

e Version 3.0

In order to do sentiment analysis with opinion mining, create an array of strings containing the document you
want to analyze. Call the client's analyzesentiment() method with adding option flag

includeOpinionMining: true and getthe returned sentimentBatchResult object. Iterate through the list of results,
and print each document's ID, document level sentiment with confidence scores. For each document, result

contains not only sentence level sentiment as above, but also aspect and opinion level sentiment.

async function sentimentAnalysisWithOpinionMining(client){

const sentimentInput = [

{
text: "The food and service were unacceptable, but the concierge were nice",
id: "e",
language: "en"

}

1;

const results = await client.analyzeSentiment(sentimentInput, { includeOpinionMining: true });

for (let i = 9; i < results.length; i++) {
const result = results[i];
console.log(" - Document ${result.id});
if (!result.error) {
console.log(" \tDocument text: ${sentimentInput[i].text});
console.log(\tOverall Sentiment: ${result.sentiment});
console.log("\tSentiment confidence scores:", result.confidenceScores);
console.log("\tSentences");
for (const { sentiment, confidenceScores, opinions } of result.sentences) {
console.log(" \t- Sentence sentiment: ${sentiment}”);
console.log("\t Confidence scores:", confidenceScores);
console.log("\t Mined opinions");
for (const { target, assessments } of opinions) {
console.log(\t\t- Target text: ${target.text});
console.log(\t\t Target sentiment: ${target.sentiment});
console.log("\t\t Target confidence scores:", target.confidenceScores);
console.log("\t\t Target assessments");
for (const { text, sentiment } of assessments) {
console.log (" \t\t\t- Text: ${text});
console.log(\t\t\t Sentiment: ${sentiment});

}
} else {
console.error(\tError: ${result.error}’);

}
sentimentAnalysisWithOpinionMining(textAnalyticsClient)

Run your code with node index.js in your console window.

Output

- Document @
Document text: The food and service were unacceptable, but the concierge were nice
Overall Sentiment: positive
Sentiment confidence scores: { positive: ©.84, neutral: 0, negative: 0.16 }
Sentences
- Sentence sentiment: positive
Confidence scores: { positive: ©.84, neutral: @, negative: 0.16 }
Mined opinions
- Target text: food
Target sentiment: negative
Target confidence scores: { positive: 0.01, negative: ©.99 }
Target assessments
- Text: unacceptable
Sentiment: negative
- Target text: service
Target sentiment: negative
Target confidence scores: { positive: 0.01, negative: 0.99 }
Target assessments
- Text: unacceptable
Sentiment: negative
- Target text: concierge
Target sentiment: positive
Target confidence scores: { positive: 1, negative: 0 }
Target assessments
- Text: nice
Sentiment: positive

Language detection

e Version 3.1

e Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's detectLanguage()
method and get the returned DetectLanguageResultCollection . Then iterate through the results, and print each

document's ID with respective primary language.

async function languageDetection(client) {

const languageInputArray = [
"Ce document est rédigé en Francais."
15

const languageResult = await client.detectLanguage(languageInputArray);

languageResult.forEach(document => {

console.log(ID: ${document.id});

console.log(\tPrimary Language ${document.primarylLanguage.name})
s

}
languageDetection(textAnalyticsClient);

Run your code with node index.js in your console window.

Output

ID: ©
Primary Language French

Named Entity Recognition (NER)

e Version 3.1

e Version 3.0

Create an array of strings containing the document you want to analyze. Call the client's recognizeEntities()
method and get the RecognizeEntitiesResult oObject. Iterate through the list of results, and print the entity name,

type, subtype, offset, length, and score.

async function entityRecognition(client){

const entityInputs = [
"Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC
interpreters for the Altair 8800",
"La sede principal de Microsoft se encuentra en la ciudad de Redmond, a 21 kildémetros de Seattle."
1;

const entityResults = await client.recognizeEntities(entityInputs);

entityResults.forEach(document => {
console.log(Document ID: ${document.id}");
document.entities.forEach(entity => {
console.log(\tName: ${entity.text} \tCategory: ${entity.category} \tSubcategory:
${entity.subCategory ? entity.subCategory : "N/A"}");
console.log(\tScore: ${entity.confidenceScore});
1)
1)

}
entityRecognition(textAnalyticsClient);

Run your code with node index.js in your console window.

Output

Document ID: ©

Name: Microsoft Category: Organization Subcategory: N/A
Score: 0.29
Name: Bill Gates Category: Person Subcategory: N/A
Score: 0.78
Name: Paul Allen Category: Person Subcategory: N/A
Score: 0.82
Name: April 4, 1975 Category: DateTime Subcategory: Date
Score: 0.8
Name: 8800 Category: Quantity Subcategory: Number
Score: 0.8

Document ID: 1
Name: 21 Category: Quantity Subcategory: Number
Score: 0.8
Name: Seattle Category: Location Subcategory: GPE
Score: 0.25

Personally Identifying Information (PIl) recognition

Create an array of strings containing the document you want to analyze. Call the client's recognizePiiEntities()
method and get the RecognizePIIEntitiesResult object. Iterate through the list of results, and print the entity

name, type, and score.

async function piiRecognition(client) {

const documents = [
"The employee's phone number is (555) 555-5555."

1;
const results = await client.recognizePiiEntities(documents, "en");
for (const result of results) {
if (result.error === undefined) {
console.log("Redacted Text: ", result.redactedText);
console.log(" -- Recognized PII entities for input", result.id, "--");

for (const entity of result.entities) {
, entity.category, "(Score:", entity.confidenceScore, ")");

console.log(entity.text,

}
} else {
console.error("Encountered an error:", result.error);

}
piiRecognition(textAnalyticsClient)

Run your code with node index.js in your console window.

Output

Redacted Text: The employee's phone number is *¥¥¥xkdxkkxixx
-- Recognized PII entities for input © --
(555) 555-5555 : Phone Number (Score: 0.8)

Entity linking

e \ersion 3.1

e \ersion 3.0

Create an array of strings containing the document you want to analyze. Call the client's
recognizelinkedEntities() method and get the RecognizelLinkedEntitiesResult object. Iterate through the list of
results, and print the entity name, ID, data source, url, and matches. Every object in matches array will contain

offset, length, and score for that match.

async function linkedEntityRecognition(client){

const linkedEntityInput = [

"Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC
interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman,
chief executive officer, president and chief software architect, while also being the largest individual
shareholder until May 2014."

1

const entityResults = await client.recognizelLinkedEntities(linkedEntityInput);

entityResults.forEach(document => {
console.log(Document ID: ${document.id});
document.entities.forEach(entity => {
console.log(\tName: ${entity.name} \tID: ${entity.dataSourceEntityId} \tURL: ${entity.url}
\tData Source: ${entity.dataSource}");
console.log(\tMatches:")
entity.matches.forEach(match => {
console.log(\t\tText: ${match.text} \tScore: ${match.confidenceScore.toFixed(2)});
1))
s
1)
}
linkedEntityRecognition(textAnalyticsClient);

Run your code with node index.js in your console window.

Output

Document ID: ©

Name: Altair 8800 ID: Altair 8800 URL: https://en.wikipedia.org/wiki/Altair_8800 Data
Source: Wikipedia
Matches:
Text: Altair 8800 Score: 0.88
Name: Bill Gates ID: Bill Gates URL: https://en.wikipedia.org/wiki/Bill_Gates Data Source:
Wikipedia
Matches:
Text: Bill Gates Score: 0.63
Text: Gates Score: 0.63
Name: Paul Allen ID: Paul Allen URL: https://en.wikipedia.org/wiki/Paul_Allen Data Source:
Wikipedia
Matches:
Text: Paul Allen Score: 0.60
Name: Microsoft ID: Microsoft URL: https://en.wikipedia.org/wiki/Microsoft Data Source:
Wikipedia
Matches:
Text: Microsoft Score: 0.55
Text: Microsoft Score: 0.55
Name: April 4 ID: April 4 URL: https://en.wikipedia.org/wiki/April_4 Data Source:
Wikipedia
Matches:
Text: April 4 Score: 0.32
Name: BASIC ID: BASIC URL: https://en.wikipedia.org/wiki/BASIC Data Source:
Wikipedia
Matches:
Text: BASIC Score: 0.33

Key phrase extraction

e \ersion 3.1

e \ersion 3.0

Create an array of strings containing the document you want to analyze. Call the client's extractkeyPhrases()

method and get the returned ExtractkeyPhrasesResult object. Iterate through the results and print each
document's ID, and any detected key phrases.

async function keyPhraseExtraction(client){

const keyPhrasesInput = [
"My cat might need to see a veterinarian."
1

const keyPhraseResult = await client.extractKeyPhrases(keyPhrasesInput);

keyPhraseResult.forkach(document => {
console.log(ID: ${document.id});
console.log(\tDocument Key Phrases: ${document.keyPhrases});
1)
}
keyPhraseExtraction(textAnalyticsClient);

Run your code with node index.js in your console window.

Output

ID: ©

Document Key Phrases: cat,veterinarian

Extract health entities

Caution

e To use the health operation, make sure your Azure resource is using the S standard pricing tier.

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The
below sample shows a basic example. You can find a more advanced sample on GitHub.

e \ersion 3.1

e \ersion 3.0

https://github.com/Azure/azure-sdk-for-js/blob/main/sdk/textanalytics/ai-text-analytics/samples/v5/javascript/beginAnalyzeHealthcareEntities.js

async function healthExample(client) {
console.log("== Recognize Healthcare Entities Sample ==");

const documents = [
"Prescribed 100mg ibuprofen, taken twice daily."
1
const poller = await client.beginAnalyzeHealthcareEntities(documents, "en", {
includeStatistics: true

s

poller.onProgress(() => {
console.log(
“Last time the operation was updated was on: ${poller.getOperationState().lastModifiedOn}"
)
s
console.log(
“The analyze healthcare entities operation was created on ${
poller.getOperationState().createdOn
¥
)
console.log(
“The analyze healthcare entities operation results will expire on ${
poller.getOperationState().expiresOn
¥
)

const results = await poller.pollUntilDone();

for await (const result of results) {
console.log(" - Document ${result.id});
if (!result.error) {
console.log("\tRecognized Entities:");
for (const entity of result.entities) {
console.log(\t- Entity "${entity.text}" of type ${entity.category});
}
if (result.entityRelations && (result.entityRelations.length > 0)) {
console.log(\tRecognized relations between entities:’);
for (const relation of result.entityRelations) {
console.log(
“\t\t- Relation of type ${relation.relationType} found between the following entities:"
)
for (const role of relation.roles) {
console.log(\t\t\t- "${role.entity.text}" with the role ${role.name});

}

} else console.error("\tError:", result.error);

healthExample(textAnalyticsClient).catch((err) => {
console.error("The sample encountered an error:", err);

s

Output

- Document @
Recognized Entities:
- Entity "10emg" of type Dosage
- Entity "ibuprofen" of type MedicationName
- Entity "twice daily" of type Frequency
Recognized relations between entities:
- Relation of type DosageOfMedication found between the following entities:
- "leemg" with the role Dosage
- "ibuprofen" with the role Medication
- Relation of type FrequencyOfMedication found between the following entities:
- "ibuprofen" with the role Medication
- "twice daily" with the role Frequency

Use the API asynchronously with the Analyze operation

e \lersion 3.1

e \ersion 3.0

You can use the Analyze operation to perform asynchronous batch requests for: NER, key phrase extraction,
sentiment analysis, and Pl detection. The below sample shows a basic example on one operation. You can find
more advanced samples for JavaScript and TypeScript on GitHub.

Caution

e To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Create a new function called analyze_example() , which calls the beginanalyze() function. The result will be a

long running operation which will be polled for results.

https://github.com/Azure/azure-sdk-for-js/blob/master/sdk/textanalytics/ai-text-analytics/samples/v5/javascript/beginAnalyzeActions.js
https://github.com/Azure/azure-sdk-for-js/blob/master/sdk/textanalytics/ai-text-analytics/samples/v5/typescript/src/beginAnalyzeActions.ts

async function analyze_example(client) {
const documents = [
"Microsoft was founded by Bill Gates and Paul Allen.",

1;

const actions = {
recognizeEntitiesActions: [{ modelVersion: "latest" }],
extractKeyPhrasesActions: [{ modelVersion: "latest" }]
s

const poller = await client.beginAnalyzeActions(documents, actions,

en");

console.log(
“The analyze batch actions operation was created on ${poller.getOperationState().createdOn}"
)
console.log(
“The analyze batch actions operation results will expire on ${poller.getOperationState().expiresOn
¥
)
const resultPages = await poller.pollUntilDone();
for await (const page of resultPages) {
const entitiesAction = page.recognizeEntitiesResults[0];
if (!entitiesAction.error) {
for (const doc of entitiesAction.results) {
console.log(" - Document ${doc.id});
if (!doc.error) {
console.log("\tEntities:");
for (const entity of doc.entities) {
console.log(\t- Entity ${entity.text} of type ${entity.category});
}
} else {
console.error("\tError:", doc.error);

}
for await (const page of resultPages) {
const keyPhrasesAction = page.extractKeyPhrasesResults[0];
if (!keyPhrasesAction.error) {
for (const doc of keyPhrasesAction.results) {
console.log(- Document ${doc.id});
if (!doc.error) {
console.log("\tKey phrases:");
for (const phrase of doc.keyPhrases) {
console.log(\t- ${phrase}’);
}
} else {
console.error("\tError:", doc.error);

}
analyze_example(textAnalyticsClient)

Output

The analyze batch actions operation was created on Fri Jun 18 2021 12:34:52 GMT-0700 (Pacific Daylight Time)
The analyze batch actions operation results will expire on Sat Jun 19 2021 12:34:52 GMT-0700 (Pacific
Daylight Time)
- Document ©

Entities:

- Entity Microsoft of type Organization

- Entity Bill Gates of type Person

- Entity Paul Allen of type Person
- Document ©

Key phrases:

- Bill Gates

- Paul Allen

- Microsoft

You can also use the Analyze operation to perform NER, key phrase extraction, sentiment analysis and detect PII.
See the Analyze samples for JavaScript and TypeScript on GitHub.

Run the application with the node command on your quickstart file.

node index.js

IMPORTANT
® The latest stable version of the Text Analytics APl is 3.1 .
o Be sure to only follow the instructions for the version you are using.

® The code in this article uses synchronous methods and un-secured credentials storage for simplicity reasons. For
production scenarios, we recommend using the batched asynchronous methods for performance and scalability. See
the reference documentation below. If you want to use Text Analytics for health or Asynchronous operations, see the
examples on Github for C#, Python or Java

e \ersion 3.1

e \ersion 3.0

v3.1 Reference documentation | v3.1 Library source code | v3.1 Package (PiPy) | v3.1 Samples

Prerequisites

e Azure subscription - Create one for free
e Python 3.x

e Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key
and endpoint. After it deploys, click Go to resource.

o You will need the key and endpoint from the resource you create to connect your application to the
Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

o You can use the free pricing tier (Fe) to try the service, and upgrade later to a paid tier for production.

e To use the Analyze feature, you will need a Text Analytics resource with the standard (S) pricing tier.

Setting up
Install the client library

After installing Python, you can install the client library with:

e \ersion 3.1

e \ersion 3.0

https://github.com/Azure/azure-sdk-for-js/blob/master/sdk/textanalytics/ai-text-analytics/samples/v5/javascript/beginAnalyzeActions.js
https://github.com/Azure/azure-sdk-for-js/tree/master/sdk/textanalytics/ai-text-analytics/samples/v5/typescript/src
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://docs.microsoft.com/en-us/python/api/azure-ai-textanalytics/azure.ai.textanalytics?preserve-view=true&view=azure-python-preview
https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/textanalytics/azure-ai-textanalytics
https://pypi.org/project/azure-ai-textanalytics/5.1.0/
https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/textanalytics/azure-ai-textanalytics/samples
https://azure.microsoft.com/free/cognitive-services
https://www.python.org/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics

pip install azure-ai-textanalytics==5.1.0

TIP

Want to view the whole quickstart code file at once? You can find it on GitHub, which contains the code examples in this
quickstart.

Create a new python application

Create a new Python file and create variables for your resource's Azure endpoint and subscription key.

IMPORTANT

Go to the Azure portal. If the Text Analytics resource you created in the Prerequisites section deployed successfully, click
the Go to Resource button under Next Steps. You can find your key and endpoint in the resource's key and
endpoint page, under resource management.

Remember to remove the key from your code when you're done, and never post it publicly. For production, consider using

a secure way of storing and accessing your credentials. For example, Azure key vault.

key = "<paste-your-text-analytics-key-here>"
endpoint = "<paste-your-text-analytics-endpoint-here>"

Object model

e \ersion 3.1

e \ersion 3.0

The Text Analytics clientis a TextAnalyticsClient object that authenticates to Azure. The client provides several

methods for analyzing text.

When processing text is sent to the APl as a list of documents , which is either as a list of string, a list of dict-like
representation, or as a list of TextDocumentInput/DetectLanguageInput . A dict-like oObject contains a
combination of id, text ,and language/country_hint . The text attribute stores the text to be analyzed in the

origin country_hint , and the id can be any value.

The response object is a list containing the analysis information for each document.

Code examples

These code snippets show you how to do the following tasks with the Text Analytics client library for Python:

e \lersion 3.1

Version 3.0

e Authenticate the client

e Sentiment Analysis

e Opinion mining

e Language detection

e Named Entity recognition

e Personally Identifiable Information recognition

https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/python/TextAnalytics/python-v3-client-library.py
https://docs.microsoft.com/en-us/azure/key-vault/general/overview

e Entity linking

e Key phrase extraction

Authenticate the client

e Version 3.1

e Version 3.0

Create a function to instantiate the TextAnalyticsClient object with your key AND endpoint created above.

Then create a new client.

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

def authenticate_client():
ta_credential = AzureKeyCredential(key)
text_analytics_client = TextAnalyticsClient(
endpoint=endpoint,
credential=ta_credential)
return text_analytics_client

client = authenticate_client()

Sentiment analysis

e \ersion 3.1

e \ersion 3.0

Create a new function called sentiment_analysis_example() that takes the clientas an argument, then calls the
analyze_sentiment() function. The returned response object will contain the sentiment label and score of the

entire input document, as well as a sentiment analysis for each sentence.

def sentiment_analysis_example(client):

documents = ["I had the best day of my life. I wish you were there with me."]
response = client.analyze_sentiment(documents=documents)[0]
print("Document Sentiment: {}".format(response.sentiment))
print("Overall scores: positive={0:.2f}; neutral={1:.2f}; negative={2:.2f} \n".format(
response.confidence_scores.positive,
response.confidence_scores.neutral,
response.confidence_scores.negative,
))
for idx, sentence in enumerate(response.sentences):
print("Sentence: {}".format(sentence.text))
print("Sentence {} sentiment: {}".format(idx+1l, sentence.sentiment))
print("Sentence score:\nPositive={0:.2f}\nNeutral={1:.2f}\nNegative={2:.2f}\n".format(
sentence.confidence_scores.positive,
sentence.confidence_scores.neutral,
sentence.confidence_scores.negative,

))

sentiment_analysis_example(client)

Output

Document Sentiment: positive
Overall scores: positive=1.00; neutral=0.00; negative=0.00

Sentence: I had the best day of my life.
Sentence 1 sentiment: positive

Sentence score:

Positive=1.00

Neutral=0.00

Negative=0.00

Sentence: I wish you were there with me.
Sentence 2 sentiment: neutral

Sentence score:

Positive=0.21

Neutral=0.77

Negative=0.02

Opinion mining
e \ersion 3.1

e \ersion 3.0

In order to do sentiment analysis with opinion mining, create a new function called
sentiment_analysis_with_opinion_mining_example() that takes the client as an argument, then calls the
analyze_sentiment() function with option flag show_opinion_mining=True . The returned response object will

contain not only the sentiment label and score of the entire input document with sentiment analysis for each

sentence, but also aspect and opinion level sentiment analysis.

def sentiment_analysis_with_opinion_mining_example(client):

documents = [

"The food and service were unacceptable, but the concierge were nice’

result = client.analyze_sentiment(documents, show_opinion_mining=True)
doc_result = [doc for doc in result if not doc.is_error]

positive_reviews = [doc for doc in doc_result if doc.sentiment == "positive"]

negative_reviews = [doc for doc in doc_result if doc.sentiment == "negative"]

positive_mined_opinions = []
mixed_mined_opinions = []
negative_mined_opinions = []

for document in doc_result:
print("Document Sentiment: {}".format(document.sentiment))

print("Overall scores: positive={@:.2f}; neutral={1:.2f}; negative={2:.2f} \n".format(

document.confidence_scores.positive,
document.confidence_scores.neutral,
document.confidence_scores.negative,

))

for sentence in document.sentences:
print("Sentence: {}".format(sentence.text))
print("Sentence sentiment: {}".format(sentence.sentiment))

print("Sentence score:\nPositive={0:.2f}\nNeutral={1:.2f}\nNegative={2:.2f}\n".format(

sentence.confidence_scores.positive,
sentence.confidence_scores.neutral,
sentence.confidence_scores.negative,

for mined_opinion in sentence.mined_opinions:
target = mined_opinion.target

print("...... ‘{}' target '{}'".format(target.sentiment, target.text))
print("...... Target score:\n...... Positive={0@:.2f}\n...... Negative={1:.2f}\n".format(

target.confidence_scores.positive,
target.confidence_scores.negative,

))

for assessment in mined_opinion.assessments:
print("...... '{}' assessment '{}'".format(assessment.sentiment, assessment.text))
print("...... Assessment score:\n...... Positive={0:.2f}\n...... Negative=

{1:.2f}\n".format(
assessment.confidence_scores.positive,
assessment.confidence_scores.negative,

))
print("\n")
print("\n")

sentiment_analysis_with_opinion_mining_example(client)

Output

Document Sentiment: positive
Overall scores: positive=0.84; neutral=0.00; negative=0.16

Sentence: The food and service were unacceptable, but the concierge were nice
Sentence sentiment: positive

Sentence score:

Positive=0.84

Neutral=0.00

Negative=0.16

...... 'negative' target 'food’
...... Target score:
...... Positive=0.01
...... Negative=0.99

...... 'negative’ assessment 'unacceptable’
...... Assessment score:

...... Positive=0.01

...... Negative=0.99

...... 'negative’ target 'service'
...... Target score:
...... Positive=0.01
...... Negative=0.99

...... 'negative' assessment 'unacceptable’
...... Assessment score:

...... Positive=0.01

...... Negative=0.99

...... 'positive’ target 'concierge’
...... Target score:
...... Positive=1.00
...... Negative=0.00

...... 'positive' assessment 'nice’
...... Assessment score:

...... Positive=1.00

...... Negative=0.00

Press any key to continue .

Language detection

e Version 3.1

e Version 3.0

Create a new function called 1language_detection_example() that takes the client as an argument, then calls the
detect_language() function. The returned response object will contain the detected language in

primary_language if successful, and an error if not.

TIP

In some cases it may be hard to disambiguate languages based on the input. You can use the country_hint parameter
to specify a 2-letter country code. By default the API is using the "US" as the default countryHint, to remove this behavior

you can reset this parameter by setting this value to empty string country_hint : "" .

def language_detection_example(client):
try:
documents = ["Ce document est rédigé en Frangais."]
response = client.detect_language(documents = documents, country_hint = 'us')[0]
print("Language: ", response.primary_language.name)

except Exception as err:
print("Encountered exception. {}".format(err))
language_detection_example(client)

Output

Language: French

Named Entity Recognition (NER)

e \ersion 3.1

e \ersion 3.0

NOTE

In version 3.1 :

® Entity linking is a separate request than NER.

Create a new function called entity_recognition_example that takes the clientas an argument, then calls the
recognize_entities() function and iterates through the results. The returned response object will contain the
list of detected entities in entity if successful, and an error if not. For each detected entity, print its Category

and Sub-Category if exists.

def entity_recognition_example(client):

try:
documents = ["I had a wonderful trip to Seattle last week."]
result = client.recognize_entities(documents = documents)[0]

print(“"Named Entities:\n")
for entity in result.entities:
print("\tText: \t", entity.text, "\tCategory: \t", entity.category, "\tSubCategory: \t",
entity.subcategory,

"\n\tConfidence Score: \t", round(entity.confidence_score, 2), "\tLength: \t",
entity.length, "\tOffset: \t", entity.offset, "\n")

except Exception as err:

print("Encountered exception. {}".format(err))
entity_recognition_example(client)

Output

Named Entities:

Text: trip Category: Event SubCategory: None

Confidence Score: 0.61 Length: 4 Offset: 18

Text: Seattle Category: Location SubCategory: GPE
Confidence Score: 0.82 Length: 7 Offset: 26

Text: last week Category: DateTime SubCategory: DateRange
Confidence Score: 0.8 Length: 9 Offset: 34

Personally Identifiable Information (PIl) recognition

Create a new function called pii_recognition_example that takes the client as an argument, then calls the
recognize_pii_entities() function and iterates through the results. The returned response object will contain
the list of detected entities in entity if successful, and an error if not. For each detected entity, print its

Category and Sub-Category if exists.

def pii_recognition_example(client):
documents = [
"The employee's SSN is 859-98-0987.",
"The employee's phone number is 555-555-5555."
1
response = client.recognize_pii_entities(documents, language="en"
result = [doc for doc in response if not doc.is_error]
for doc in result:
print("Redacted Text: {}".format(doc.redacted_text))
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("\tCategory: {}".format(entity.category))
print("\tConfidence Score: {}".format(entity.confidence_score))
print("\tOffset: {}".format(entity.offset))
print("\tLength: {}".format(entity.length))
pii_recognition_example(client)

Output

Redacted Text: The employee's SSN is *¥x¥kkkxxik,
Entity: 859-98-0987

Category: U.S. Social Security Number (SSN)

Confidence Score: 0.65

Offset: 22

Length: 11
Redacted Text: The employee's phone number is *¥¥*¥xiikokxxx
Entity: 555-555-5555

Category: Phone Number

Confidence Score: 0.8

Offset: 31

Length: 12

Entity linking

e \ersion 3.1

e \ersion 3.0

Create a new function called entity_linking_example() that takes the clientas an argument, then calls the
recognize_linked_entities() function and iterates through the results. The returned response object will contain
the list of detected entities in entities if successful, and an error if not. Since linked entities are uniquely

identified, occurrences of the same entity are grouped under a entity objectas a list of match objects.

def entity_linking_example(client):

try:
documents = ["""Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975,
to develop and sell BASIC interpreters for the Altair 8800.
During his career at Microsoft, Gates held the positions of chairman,
chief executive officer, president and chief software architect,
while also being the largest individual shareholder until May 2014."""]
result = client.recognize_linked_entities(documents = documents)[0]

print("Linked Entities:\n")
for entity in result.entities:

print("\tName:
"\n\tData Source: ", entity.data_source)
print("\tMatches:")
for match in entity.matches:
print("\t\tText:", match.text)
print("\t\tConfidence Score: {0:.2f}".format(match.confidence_score))
print("\t\tOffset: {}".format(match.offset))
print("\t\tLength: {}".format(match.length))

, entity.name, "\tId: ", entity.data_source_entity_id, "\tUrl: ", entity.url,

except Exception as err:
print("Encountered exception. {}".format(err))
entity_linking_example(client)

Output

Linked Entities:

Name: Microsoft Id: Microsoft Url: https://en.wikipedia.org/wiki/Microsoft
Data Source: Wikipedia
Matches:

Text: Microsoft

Confidence Score: 0.55

Offset: ©

Length: 9

Text: Microsoft

Confidence Score: 0.55

Offset: 168

Length: 9
Name: Bill Gates Id: Bill Gates Url: https://en.wikipedia.org/wiki/Bill_Gates
Data Source: Wikipedia

Matches:
Text: Bill Gates
Confidence Score: 0.63
Offset: 25
Length: 10
Text: Gates
Confidence Score: 0.63
Offset: 179
Length: 5
Name: Paul Allen Id: Paul Allen Url: https://en.wikipedia.org/wiki/Paul_Allen
Data Source: Wikipedia
Matches:
Text: Paul Allen
Confidence Score: 0.60
Offset: 40
Length: 10
Name: April 4 1Id: April 4 Url: https://en.wikipedia.org/wiki/April_4
Data Source: Wikipedia
Matches:
Text: April 4
Confidence Score: 0.32

Offset: 54

Length: 7
Name: BASIC Id: BASIC Url: https://en.wikipedia.org/wiki/BASIC
Data Source: Wikipedia
Matches:

Text: BASIC

Confidence Score: 0.33

Offset: 98

Length: 5
Name: Altair 8800 Id: Altair 8800 Url: https://en.wikipedia.org/wiki/Altair_8800
Data Source: Wikipedia
Matches:

Text: Altair 8800
Confidence Score: 0.88
Offset: 125

Length: 11

Key phrase extraction

e Version 3.1

e Version 3.0

Create a new function called key_phrase_extraction_example() that takes the client as an argument, then calls
the extract_key_phrases() function. The result will contain the list of detected key phrases in key_phrases if
successful, and an error if not. Print any detected key phrases.

def key_phrase_extraction_example(client):

try:
documents = ["My cat might need to see a veterinarian."]

response = client.extract_key_phrases(documents = documents)[0]

if not response.is_error:
print("\tKey Phrases:")
for phrase in response.key_phrases:
print("\t\t", phrase)
else:
print(response.id, response.error)

except Exception as err:
print("Encountered exception. {}".format(err))

key_phrase_extraction_example(client)

Output

Key Phrases:
cat

veterinarian

Extract health entities

You can use Text Analytics to perform an asynchronous request to extract healthcare entities from text. The
below sample shows a basic example. You can find a more advanced sample on GitHub.

Caution

e To use the health operation, make sure your Azure resource is using the S standard pricing tier.

e Version 3.1

e Version 3.0

https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_healthcare_entities.py

def health_example(client):
documents = [

Patient needs to take 50 mg of ibuprofen.

poller = client.begin_analyze_healthcare_entities(documents)
result = poller.result()

docs = [doc for doc in result if not doc.is_error]

for idx, doc in enumerate(docs):

for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("...Normalized Text: {}".format(entity.normalized_text))
print("...Category: {}".format(entity.category))
print("...Subcategory: {}".format(entity.subcategory))
print("...0ffset: {}".format(entity.offset))
print("...Confidence score: {}".format(entity.confidence_score))

for relation in doc.entity_relations:
print("Relation of type: {} has the following roles".format(relation.relation_type))
for role in relation.roles:

print("...Role '{}' with entity '{}'".format(role.name, role.entity.text))
print(M---m s m e ")
health_example(client)

Output

Entity: 50 mg
..Normalized Text: None
..Category: Dosage
..Subcategory: None
..Offset: 31
...Confidence score: 1.0
Entity: ibuprofen
..Normalized Text: ibuprofen
..Category: MedicationName
..Subcategory: None
..Offset: 40
...Confidence score: 1.0
Relation of type: DosageOfMedication has the following roles
...Role 'Dosage’ with entity '50 mg'
...Role 'Medication' with entity 'ibuprofen'’

Use the API asynchronously with the Analyze operation

e \ersion 3.1

e \ersion 3.0

You can use the Analyze operation to perform asynchronous batch requests for: NER, key phrase extraction,
sentiment analysis, and Pl detection. The below sample shows a basic example on one operation. You can find a
more advanced sample on GitHub.

Caution

e To use the Analyze operation, make sure your Azure resource is using the S standard pricing tier.

Create a new function called analyze_batch_example() that takes the client as an argument, then calls the
begin_analyze_actions() function. The result will be a long running operation which will be polled for results.

https://github.com/Azure/azure-sdk-for-python/blob/master/sdk/textanalytics/azure-ai-textanalytics/samples/sample_analyze_actions.py

from azure.ai.textanalytics import (
RecognizeEntitiesAction,
ExtractKeyPhrasesAction

def analyze_batch_example(client):
documents = [
"Microsoft was founded by Bill Gates and Paul Allen."

poller = client.begin_analyze_actions(
documents,
display name="Sample Text Analysis"”,
actions=[RecognizeEntitiesAction(), ExtractKeyPhrasesAction()]

result = poller.result()

action_results = [action_result for action_result in list(result)]
first_action_result = action_results[@][0]

print("Results of Entities Recognition action:")

for entity in first_action_result.entities:
print("Entity: {}".format(entity.text))
print("...Category: {}".format(entity.category))
print("...Confidence Score: {}".format(entity.confidence_score))
print("...0ffset: {}".format(entity.offset))
print("...Length: {}".format(entity.length))

print("--------m e - ")

second_action_result = action_results[0][1]
print("Results of Key Phrase Extraction action:")

for key_phrase in second_action_result.key_phrases:
print("Key Phrase: {}\n".format(key_phrase))
praint (M- - s s m e ")

analyze_batch_example(client)

Output

Results of Entities Recognition action:
Entity: Microsoft

..Category: Organization

..Confidence Score: 1.0

..Offset: 0

...Length: 9
Entity: Bill Gates

..Category: Person

..Confidence Score: 1.0

..Offset: 25

...Length: 10
Entity: Paul Allen

..Category: Person

..Confidence Score: 1.0

..Offset: 40

.Length: 10

Results of Key Phrase Extraction action:
Key Phrase: Bill Gates

Key Phrase: Paul Allen

Key Phrase: Microsoft

IMPORTANT
® The latest stable version of the Text Analytics APl is 3.1 .

© Be sure to only follow the instructions for the version you are using.

e Version 3.1

e Version 3.0

v3.1 Reference documentation

Prerequisites

e The current version of cURL.

e Once you have your Azure subscription, create a Text Analytics resource in the Azure portal to get your key
and endpoint. After it deploys, click Go to resource.

o You will need the key and endpoint from the resource you create to connect your application to the
Text Analytics API. You'll paste your key and endpoint into the code below later in the quickstart.

o You can use the free pricing tier (Fe) to try the service, and upgrade later to a paid tier for production.

NOTE

® The following BASH examples use the \ line continuation character. If your console or terminal uses a different line
continuation character, use that character.

® You can find language specific samples on GitHub.

® Go to the Azure portal and find the key and endpoint for the Text Analytics resource you created in the prerequisites.
They will be located on the resource's key and endpoint page, under resource management. Then replace the
strings in the code below with your key and endpoint. To call the Text Analytics API, you need the following

information:
PARAMETER DESCRIPTION
-X POST <endpoint> Specifies your endpoint for accessing the API.
-H Content-Type: application/json The content type for sending JSON data.
-H "Ocp-Apim-Subscription-Key:<key> Specifies the key for accessing the API.
-d <documents> The JSON containing the documents you want to send.

The following cURL commands are executed from a BASH shell. Edit these commands with your own resource
name, resource key, and JSON values.

Sentiment Analysis

1. Copy the command into a text editor.
2. Make the following changes in the command where needed:
a. Replace the value <your-text-analytics-key-here> with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here> with the your own
endpoint URL.

3. Open a command prompt window.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/
https://curl.haxx.se/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://github.com/Azure-Samples/cognitive-services-quickstart-code

4. Paste the command from the text editor into the command prompt window, and then run the command.

e version 3.1

e version 3.0

NOTE

The below example includes a request for the Opinion Mining feature of Sentiment Analysis using the

opinionMining=true parameter, which provides granular information about assessments (adjectives) related to targets
(nouns) in the text.

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/sentiment?opinionMining=true \
-H "Content-Type: application/json" \

-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \
-d '{ documents: [{ id: "1", text: "The customer service here is really good."}]}'

JSON response

"documents": [
{

"id":"1",

"sentiment":"positive",

"confidenceScores":{
"positive":1.0,
"neutral”:0.0,
"negative":0.0

¥

"sentences":[

{

"sentiment":"positive",
"confidenceScores":{
"positive":1.0,
"neutral”:0.0,
"negative":0.0
¥
"offset":0,
"length":41,
"text":"The customer service here is really good.",
"targets":[
{

"sentiment":"positive",

"confidenceScores":{
"positive":1.0,
"negative":0.0

¥

"offset":4,

"length":16,

"text":"customer service",

"relations":[

{

"relationType":"assessment",

"ref":"#/documents/0/sentences/0/assessments/0"

1

"assessments": [

{

"sentiment":"positive”,

"confidenceScores":{
"positive":1.0,
"negative":0.0

¥

"offset":36,

"length":4,

"text":"good",

"isNegated":false

1

"warnings":[

1

"errors":[

]J
"modelVersion":"2020-04-01"

Language detection

1. Copy the command into a text editor.
2. Make the following changes in the command where needed:
a. Replace the value <your-text-analytics-key-here> with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here> with the your own
endpoint URL.

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

e version 3.1

e version 3.0

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/languages/ \
-H "Content-Type: application/json" \

-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \

-d '{ documents: [{ id: "1", text: "This is a document written in English."}]}'

JSON response

{
"documents": [
{
nidrimen,
"detectedLanguage":{
"name":"English",
"iso6391Name":"en",
"confidenceScore":1.0
1
"warnings":[
1
}
]J
"errors":[
1,
"modelVersion":"2021-01-05"
}

Named Entity Recognition (NER)

1. Copy the command into a text editor.
2. Make the following changes in the command where needed:
a. Replace the value <your-text-analytics-key-here> with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here> with the your own
endpoint URL.

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

e version 3.1

e version 3.0

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/entities/recognition/general \
-H "Content-Type: application/json" \

-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \

-d '{ documents: [{ id: "1", language:"en", text: "I had a wonderful trip to Seattle last week."}]}'

JSON response

{
"documents": [
{
"id":"1",
"entities":[
{
"text":"Seattle",
"category":"Location",
"subcategory":"GPE",
"offset":26,
"length":7,
"confidenceScore":0.99
s
{
"text":"last week",
"category":"DateTime",
"subcategory":"DateRange",
"offset":34,
"length":9,
"confidenceScore":0.8
}
1,
"warnings":[
]
}
1,
"errors":[
1,
"modelVersion":"2021-01-15"
}

Detecting personally identifying information
1. Copy the command into a text editor.
2. Make the following changes in the command where needed:
a. Replace the value <your-text-analytics-key-here> with your key.
b. Replace the first part of the request URL <your-text-analytics-endpoint-here> with the your own
endpoint URL.
3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

curl -X POST https://your-text-analytics-endpoint-here>/text/analytics/v3.1/entities/recognition/pii \
-H "Content-Type: application/json" \

-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \

-d '{ documents: [{ id: "1", language:"en", text: "Call our office at 312-555-1234, or send an email to
support@contoso.com"}]}"’

JSON response

"documents": [

{
"redactedText":"Call our office at *¥¥¥k¥¥xikk*x op gend an email to MH¥*riokkdrsdokktxsiok!t
"id":"1",
"entities":[
{
"text":"312-555-1234",
"category": "PhoneNumber",
"offset":19,
"length":12,
"confidenceScore":0.8
1
{
"text":"support@contoso.com",
"category":"Email",
"offset":53,
"length":19,
"confidenceScore":0.8
}
1,
"warnings":[
1
}
1,
"errors":[
1

"modelVersion":"2021-01-15"

Entity linking

. Copy the command into a text editor.

. Make the following changes in the command where needed:

a. Replace the value <your-text-analytics-key-here> with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here> with the your own
endpoint URL.

3. Open a command prompt window.

. Paste the command from the text editor into the command prompt window, and then run the command.

version 3.1

version 3.0

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/entities/linking \

-H "Content-Type: application/json" \

-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \

-d '{ documents: [{ id: "1", language:"en", text: "Microsoft was founded by Bill Gates and Paul Allen on
April 4, 1975."}]}"

JSON response

"documents": [

{
"idnit1,
"entities":[

{

"bingId":"a093e9b9-90f5-a3d5-c4b8-5855e1b01f85",
"name":"Microsoft",
"matches": [

{
"text":"Microsoft",
"offset":0,
"length":9,
"confidenceScore":0.48
}

15

"language":"en",

"id":"Microsoft",
"url”:"https://en.wikipedia.org/wiki/Microsoft"”,
"dataSource":"Wikipedia"

"bingId":"0d47c987-0042-5576-15e8-97af601614fa",
"name":"Bill Gates",
"matches": [
{
"text":"Bill Gates",
"offset":25,
"length":10,
"confidenceScore":0.52

1,

"language":"en",

"id":"Bill Gates",
"url”:"https://en.wikipedia.org/wiki/Bill_Gates",

"dataSource":"Wikipedia"

"bingId":"df2c4376-9923-6a54-893f-2ee5a5badbc7",
"name":"Paul Allen",
"matches": [
{
"text":"Paul Allen",
"offset":40,
"length":10,
"confidenceScore":0.54

1,
"language":"en",
"id":"Paul Allen",
"url":"https://en.wikipedia.org/wiki/Paul_Allen",

"dataSource":"Wikipedia"

"bingId":"52535f87-235e-b513-54fe-c0@3e4233ac6e"”,
"name":"April 4",
"matches": [
{
"text":"April 4",
"offset":54,
"length":7,
"confidenceScore":0.38

1,
"language":"en",
"id":"April 4",
"url":"https://en.wikipedia.org/wiki/April_4",

"dataSource":"Wikipedia"

1

"warnings":[

"errors":[

1,
"modelVersion":"2020-02-01"

Key phrase extraction

1. Copy the command into a text editor.
2. Make the following changes in the command where needed:
a. Replace the value <your-text-analytics-key-here> with your key.

b. Replace the first part of the request URL <your-text-analytics-endpoint-here> with the your own
endpoint URL.

3. Open a command prompt window.

4. Paste the command from the text editor into the command prompt window, and then run the command.

e version 3.1

e version 3.0

curl -X POST https://<your-text-analytics-endpoint-here>/text/analytics/v3.1/keyPhrases \

-H "Content-Type: application/json" \

-H "Ocp-Apim-Subscription-Key: <your-text-analytics-key-here>" \

-d '{ documents: [{ id: "1", language:"en", text: "I had a wonderful trip to Seattle last week."}]}'

{
"documents": [
{
"idnit1,
"keyPhrases": [
"wonderful trip",
"Seattle"
1,
"warnings":[
]
}
1,
"errors":[
]J
"modelVersion":"2021-06-01"
}

Clean up resources

If you want to clean up and remove a Cognitive Services subscription, you can delete the resource or resource
group. Deleting the resource group also deletes any other resources associated with it.

e Portal

e Azure CLI

Next steps

Explore a solution

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account-cli

Text Analytics overview
Sentiment analysis
Entity recognition
Detect language

Language recognition

How to call the Text Analytics REST API

7/8/2021 » 10 minutes to read » Edit Online

In this article, we use the Text Analytics REST APl and Postman to demonstrate key concepts. The API provides
several synchronous and asynchronous endpoints for using the features of the service.

Create a Text Analytics resource

NOTE

® You will need a Text Analytics resource using a Standard (S) pricing tier if you want to use the /analyze or /health
endpoints. The /analyze endpoint is included in your pricing tier.

Before you use the Text Analytics API, you will need to create a Azure resource with a key and endpoint for your
applications.

1. First, go to the Azure portal and create a new Text Analytics resource, if you don't have one already.
Choose a pricing tier.

2. Select the region you want to use for your endpoint.

3. Create the Text Analytics resource and go to the “Keys and Endpoint” section under Resource
Management in the left of the page. Copy the key to be used later when you call the APIs. You'll add this
later as a value for the ocp-Apim-Subscription-key header.

4. To check the number of text records that have been sent using your Text Analytics resource:

a. Navigate to your Text Analytics resource in the Azure portal.
b. Click Metrics, located under Monitoring in the left navigation menu.

c. Select Processed text records in the dropdown box for Metric.

A text record is a unit of input text up to 1000 characters. For example, 1500 characters submitted as input text
will count as 2 text records.

Change your pricing tier

If you have an existing Text Analytics resource using the SO through S4 pricing tier, you should update it to use
the Standard (S) pricing tier. The SO through S4 pricing tiers will be retired. To update your resource's pricing:

1. Navigate to your Text Analytics resource in the Azure portal.
2. Select Pricing tier in the left navigation menu. It will be below RESOURCE MANAGEMENT.
3. Choose the Standard (S) pricing tier. Then click Select.

You can also create a new Text Analytics resource with the Standard (S) pricing tier, and migrate your
applications to use the credentials for the new resource.

Using the API synchronously

You can call Text Analytics synchronously (for low latency scenarios). You have to call each API (feature)
separately when using synchronous API. If you need to call multiple features then check out below section on
how to call Text Analytics asynchronously.

Using the API asynchronously

The Text Analytics v3.1 API provides two asynchronous endpoints:

e The /analyze endpoint for Text Analytics allows you to analyze the same set of text documents with
multiple text analytics features in one API call. Previously, to use multiple features you would need to
make separate API calls for each operation. Consider this capability when you need to analyze large sets

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-call-api.md
https://www.postman.com/downloads/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://portal.azure.com/

of documents with more than one Text Analytics feature.

e The /health endpoint for Text Analytics for health, which can extract and label relevant medical

information from clinical documents.

See the table below to see which features can be used asynchronously. Note that only a few features can be
called from the /analyze endpoint.

FEATURE SYNCHRONOUS ASYNCHRONOUS
Language detection v

Sentiment analysis v v

Opinion mining v v

Key phrase extraction v v

Named Entity Recognition (including v v

PIl and PHI)

Entity linking v v

Text Analytics for health (container) v

Text Analytics for health (API) v

* - Called asynchronously through the /analyze endpoint.

TIP

For detailed API technical documentation and to see it in action, use the following links. You can also send POST requests

from the built-in API test console. No setup is required, simply paste your resource key and JSON documents into the
request:

® |atest stable API - v3.1

® Previous stable API - v3.0

API request formats

You can send both synchronous and asynchronous calls to the Text Analytics API.

® Synchronous

® Asynchronous

Synchronous requests

The format for API requests is the same for all synchronous operations. Documents are submitted in a JSON
object as raw unstructured text. XML is not supported. The JSON schema consists of the elements described
below.

ELEMENT VALID VALUES REQUIRED? USAGE
id The data type is string, but Required The system uses the IDs
in practice document IDs you provide to structure
tend to be integers. the output. Language

codes, key phrases, and
sentiment scores are
generated for each ID in the
request.

https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0

ELEMENT VALID VALUES REQUIRED? USAGE

text Unstructured raw text, up Required For language detection, text
to 5,120 characters. can be expressed in any
language. For sentiment
analysis, key phrase
extraction and entity
identification, the text must
be in a supported language.

language 2-character 1ISO 639-1 code Varies Required for sentiment
for a supported language analysis, key phrase

extraction, and entity
linking; optional for
language detection. There is
no error if you exclude it,
but the analysis is
weakened without it. The
language code should
correspond to the text
you provide.

The following is an example of an API request for the synchronous Text Analytics endpoints.

{
"documents": [
{
"language": "en",
"id": "1",
"text": "Sample text to be sent to the text analytics api."
}
]
}
TIP

See the Data and rate limits article for information on the rates and size limits for sending data to the Text Analytics API.

Set up a request

In Postman (or another web API test tool), add the endpoint for the feature you want to use. Use the table below
to find the appropriate endpoint format, and replace <your-text-analytics-resource> with your resource

endpoint. For example:

TIP

You can call v3.0 of the below synchronous endpoints by replacing /v3.1 with /v3.e/ .

https://my-resource.cognitiveservices.azure.com/text/analytics/v3.1/languages
® Synchronous

e Asynchronous

Endpoints for sending synchronous requests

FEATURE REQUEST TYPE RESOURCE ENDPOINTS

Language Detection POST <your-text-analytics-
resource>/text/analytics/v3.1/languages

Sentiment Analysis POST <your-text-analytics-
resource>/text/analytics/v3.1/sentiment

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

FEATURE REQUEST TYPE RESOURCE ENDPOINTS

Opinion Mining POST <your-text-analytics-

resource>/text/analytics/v3.

opinionMining=true

Key Phrase Extraction POST <your-text-analytics-

resource>/text/analytics/v3

Named Entity Recognition - General POST <your-text-analytics-

resource>/text/analytics/v3.

Named Entity Recognition - PII POST <your-text-analytics-

resource>/text/analytics/v3.

Named Entity Recognition - PHI POST <your-text-analytics-

resource>/text/analytics/v3
domain=phi

Entity Linking POST <your-text-analytics-

resource>/text/analytics/v3.

After you have your endpoint, in Postman (or another web API test tool):

1. Choose the request type for the feature you want to use.

2. Paste in the endpoint of the proper operation you want from the above table.
3. Set the three request headers:

® Ocp-Apim-Subscription-Key :your access key, obtained from Azure portal
® Content-Type : application/json

® Accept :application/json

If you're using Postman, your request should look similar to the following screenshot, assuming a

/keyPhrases endpoint.

POST https://westus.apl.cognitive.microsoft.com/text/analytics/v2.§/keyPhrases

Headers (3)

Key Value
Ocp-Apim-Subscription-Key <your access key here>
Content-Type application/json
Accept application/json

4. Choose raw for the format of the Body

POST https://westus.api.cognitive.microsoft.com/text/analytics/v2.0/keyPhrases
(3) Body @
form-data s-www-form-urlencoded| '@ raw binary JSON (application/json)

5. Paste in some JSON documents in a valid format. Use the examples in the APl request format section

above, and for more information and examples, see the topics below:

e Language detection
e Key phrase extraction
e Sentiment analysis

e Entity recognition

Send the request

1/sentiment?

.1/keyPhrases

1/entities/recognitiony

1/entities/recognitiony

.1/entities/recognitiony

1/entities/linking

Submit the API request. If you made the call to a synchronous endpoint, the response will be displayed
immediately, as a single JSON document, with an item for each document ID provided in the request.

If you made the call to the asynchronous /analyze or /health endpoints, check that you received a 202
response code. you will need to get the response to view the results:

1. In the APl response, find the operation-Location from the header, which identifies the job you sent to the
API.

2. Create a GET request for the endpoint you used. refer to the table above for the endpoint format, and
review the API reference documentation. For example:

https://my-resource.cognitiveservices.azure.com/text/analytics/v3.1/analyze/jobs/<Operation-Location>
3. Add the operation-Location to the request.

4. The response will be a single JSON document, with an item for each document ID provided in the
request.

Please note that for both asynchronous /analyze or /health operations, the results from the GET request in
step 2 above are available for 24 hours from the time the job was created. This time is indicated by the
expirationDateTime value in the GET response. After this time period, the results are purged and are no longer
available for retrieval.

Example API responses

® Synchronous

e Asynchronous

Example responses for synchronous operation

The synchronous endpoint responses will vary depending on the endpoint you use. See the following articles
for example responses.

® language detection
e Key phrase extraction
e Sentiment analysis

e Entity recognition

See also

e Text Analytics overview

e Model versions

e Frequently asked questions (FAQ)

e Text Analytics product page

o Using the Text Analytics client library

o What's new

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/AnalyzeStatus
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/text-analytics-resource-faq.html#body
https://go.microsoft.com/fwlink/?linkid=759712

Example: Detect language with Text Analytics

7/8/2021 « 5 minutes to read ¢ Edit Online

The Language Detection feature of the Azure Text Analytics REST API evaluates text input for each document and
returns language identifiers with a score that indicates the strength of the analysis.

This capability is useful for content stores that collect arbitrary text, where language is unknown. You can parse
the results of this analysis to determine which language is used in the input document. The response also
returns a score that reflects the confidence of the model. The score value is between 0 and 1.

The Language Detection feature can detect a wide range of languages, variants, dialects, and some regional or
cultural languages. The exact list of languages for this feature isn't published.

If you have content expressed in a less frequently used language, you can try the Language Detection feature to
see if it returns a code. The response for languages that can't be detected is unknown .

TIP

Text Analytics also provides a Linux-based Docker container image for language detection, so you can install and run the
Text Analytics container close to your data.

Preparation

You must have JSON documents in this format: ID and text.

The document size must be under 5,120 characters per document. You can have up to 1,000 items (IDs) per
collection. The collection is submitted in the body of the request. The following sample is an example of content
you might submit for language detection:

{
"documents": [
{
"id": "1",
"text": "This document is in English."
s
{
"id": “"2",
"text": "Este documento estd en inglés."
s
{
"id": "3",
"text": "Ce document est en anglais."
s
{
"id": "4",
"text": "ARXHAHHEX"
s
{
"id": “"5",
"text": "3TOT AOKYMEHT Ha aHrauickom ssbike."
}

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-language-detection.md
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages

Step 1: Structure the request

For more information on request definition, see Call the Text Analytics API. The following points are restated for

convenience:
e Create a POST request. To review the API documentation for this request, see the Language Detection API.

e Set the HTTP endpoint for language detection. Use either a Text Analytics resource on Azure or an
instantiated Text Analytics container. You must include /text/analytics/v3.1/languages in the URL. For

example: https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/languages .
e Seta request header to include the access key for Text Analytics operations.

e In the request body, provide the JSON documents collection you prepared for this analysis.

TIP

Use Postman or open the API testing console in the documentation to structure a request and POST it to the service.

Step 2: POST the request

Analysis is performed upon receipt of the request. For information on the size and number of requests you can
send per minute and second, see the data limits article.

Recall that the service is stateless. No data is stored in your account. Results are returned immediately in the

response.

Step 3: View the results

All POST requests return a JSON-formatted response with the IDs and detected properties.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the
output to a file on the local system. Then, import the output into an application that you can use to sort, search,
and manipulate the data.

Results for the example request should look like the following JSON document. Notice that it's one JSON
document with multiple items with each item representing the detection result for every document you submit.
Output is in English.

Language detection will return one predominant language for one document, along with it's ISO 639-1 name,
friendly name and confidence score. A positive score of 1.0 expresses the highest possible confidence level of
the analysis.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages
https://www.iso.org/standard/22109.html

"documents": [

{
"id": "1",
"detectedLanguage": {
"name": "English",
"iso6391Name": "en",
"confidenceScore": 0.99
1
"warnings": []
+s
{
"id": "2",
"detectedLanguage": {
"name": "Spanish",
"iso6391Name": "es",
"confidenceScore": 0.91
})
"warnings": []
})
{
"id": "3",
"detectedLanguage": {
"name": "French",
"iso6391Name": "fr",
"confidenceScore": 0.78
s
"warnings": []
s
{
"id": "4",
"detectedLanguage": {
"name": "Chinese_Simplified",
"iso6391Name": "zh_chs",
"confidenceScore": 1.0
1
"warnings": []
+s
{
"id": "s5",
"detectedLanguage": {
"name": "Russian",
"iso6391Name": "ru",
"confidenceScore": 1.0
})
"warnings": []
}

]J
"errors": [],
"modelVersion": "2021-01-05"

Ambiguous content

In some cases it may be hard to disambiguate languages based on the input. You can use the countryHint
parameter to specify an ISO 3166-1 alpha-2 country/region code. By default the API is using the "US" as the
default countryHint, to remove this behavior you can reset this parameter by setting this value to empty string

countryHint =

For example, "Impossible” is common to both English and French and if given with limited context the response
will be based on the "US" country/region hint. If the origin of the text is known to be coming from France that

can be given as a hint.

Input

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

"documents": [

{

"idUs e,
"text": "impossible"

mnidrs mon,
"text": "impossible",
"countryHint": "fr"

The service now has additional context to make a better judgment:

Output
{
"documents": [
{

"detectedLanguage":{
"confidenceScore":0.62,
"iso6391Name":"en",
"name":"English"

s

"id":"1",

"warnings":[

]

s
{

"detectedLanguage":{
"confidenceScore":1.0,
"iso6391Name":"fr",
"name":"French"

s

"id":"2",

"warnings":[

]

}
1,
"errors":[
1,

"modelVersion":"2020-09-01"

If the analyzer can't parse the input, it returns (unknown)

solely of Arabic numerals.

. An example is if you submit a text block that consists

"documents": [

{
"id": "1",
"detectedLanguage": {
"name": "(Unknown)",
"iso6391Name": "(Unknown)",
"confidenceScore": 0.0
s
"warnings": []
}

1,
"errors": [],
"modelVersion": "2021-01-05"

Mixed-language content

Mixed-language content within the same document returns the language with the largest representation in the
content, but with a lower positive rating. The rating reflects the marginal strength of the assessment. In the
following example, input is a blend of English, Spanish, and French. The analyzer counts characters in each
segment to determine the predominant language.

Input
{
"documents": [
{
"id": "1",
"text": "Hello, I would like to take a class at your University. iSe ofrecen clases en espafol?
Es mi primera lengua y mds facil para escribir. Que diriez-vous des cours en frangais?"
}
1
}
Output

The resulting output consists of the predominant language, with a score of less than 1.0, which indicates a

weaker level of confidence.

{
"documents": [
{
"id": "1",
"detectedLanguage": {
"name": "Spanish",
"iso6391Name": "es",
"confidenceScore": 0.88
s
"warnings": []
}
1,
"errors": [],
"modelVersion": "2021-01-05"
}
Summary

In this article, you learned concepts and workflow for language detection by using Text Analytics in Azure
Cognitive Services. The following points were explained and demonstrated:

e Language detection is available for a wide range of languages, variants, dialects, and some regional or
cultural languages.

e JSON documents in the request body include an ID and text.

e The POST requestis toa /languages endpoint by using a personalized access key and an endpoint that's
valid for your subscription.

e Response output consists of language identifiers for each document ID. The output can be streamed to any
app that accepts JSON. Example apps include Excel and Power BI, to name a few.

See also

Text Analytics overview

Using the Text Analytics client library

What's new

Model versions

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Languages
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account

How to: Sentiment analysis and Opinion Mining

7/8/2021 « 7 minutes to read ¢ Edit Online

The Text Analytics API's Sentiment Analysis feature provides two ways for detecting positive and negative
sentiment. If you send a Sentiment Analysis request, the APl will return sentiment labels (such as "negative",
"neutral” and "positive") and confidence scores at the sentence and document-level. You can also send Opinion
Mining requests using the Sentiment Analysis endpoint, which provides granular information about the

opinions related to words (such as the attributes of products or services) in the text.

The Al models used by the API are provided by the service, you just have to send content for analysis.

Sentiment Analysis versions and features

FEATURE SENTIMENT ANALYSIS V3.0 SENTIMENT ANALYSIS V3.1
Methods for single, and batch X X

requests

Sentiment Analysis scores and labeling X X

Linux-based Docker container X

Opinion Mining X

Sentiment Analysis

Sentiment Analysis in version 3.x applies sentiment labels to text, which are returned at a sentence and

document level, with a confidence score for each.

The labels are positive negative, and neutral. At the document level, the mixed sentiment label also can be
returned. The sentiment of the document is determined below:

SENTENCE SENTIMENT RETURNED DOCUMENT LABEL

At least one positive sentence is in the document. The positive
rest of the sentences are neutral .

At least one negative sentence is in the document. The negative
rest of the sentences are neutral .

At least one negative sentence and at least one mixed
positive sentence are in the document.

All sentences in the document are neutral . neutral

Confidence scores range from 1 to 0. Scores closer to 1 indicate a higher confidence in the label's classification,
while lower scores indicate lower confidence. For each document or each sentence, the predicted scores
associated with the labels (positive, negative and neutral) add up to 1. For more information, see the Text
Analytics transparency note.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-sentiment-analysis.md
https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note?context=/azure/cognitive-services/text-analytics/context/context

Opinion Mining
Opinion Mining is a feature of Sentiment Analysis, starting in version 3.1. Also known as Aspect-based
Sentiment Analysis in Natural Language Processing (NLP), this feature provides more granular information

about the opinions related to attributes of products or services in text. The API surfaces opinions as a target

(noun or verb) and an assessment (adjective).

For example, if a customer leaves feedback about a hotel such as "The room was great, but the staff was
unfriendly.”, Opinion Mining will locate targets (aspects) in the text, and their associated assessments (opinions)

and sentiments. Sentiment Analysis might only report a negative sentiment.

Sentiment
Analysis

negative sentiment

“The room was great, but the staff was unfriendly.”

Opinion [subiect | Opinion | sentiment _______
Mining Room Great Positive
Staff Unfriendly Negative

To get Opinion Mining in your results, you must include the opinionMining=true flagin a request for sentiment
analysis. The Opinion Mining results will be included in the sentiment analysis response. Opinion mining is an
extension of Sentiment Analysis and is included in your current pricing tier.

Sending a REST API request

Preparation

Sentiment analysis produces a higher-quality result when you give it smaller amounts of text to work on. This is
opposite from key phrase extraction, which performs better on larger blocks of text. To get the best results from
both operations, consider restructuring the inputs accordingly.

You must have JSON documents in this format: ID, text, and language. Sentiment Analysis supports a wide range

of languages. For more information, see Supported languages.

Document size must be under 5,120 characters per document. For the maximum number of documents
permitted in a collection, see the data limits article under Concepts. The collection is submitted in the body of

the request.

Structure the request

Create a POST request. You can use Postman or the API testing console in the following reference links to
quickly structure and send one.

e Version 3.1

e Version 3.0

Sentiment Analysis v3.1 reference

Request endpoints

Set the HTTPS endpoint for sentiment analysis by using either a Text Analytics resource on Azure or an
instantiated Text Analytics container. You must include the correct URL for the version you want to use. For
example:

NOTE

You can find your key and endpoint for your Text Analytics resource on the Azure portal. They will be located on the
resource's Quick start page, under resource management.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/how-tos/opinion-mining.png#lightbox
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Sentiment

e Version 3.1

e Version 3.0

Sentiment Analysis
https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/sentiment

Opinion Mining

To get Opinion Mining results, you must include the opinionMining=true parameter. For example:
https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/sentiment?opinionMining=true
This parameter is set to false by default.

Set a request header to include your Text Analytics API key. In the request body, provide the JSON documents

collection you prepared for this analysis.

Example request for Sentiment Analysis and Opinion Mining

The following is an example of content you might submit for sentiment analysis. The request format is the same

for both v3.e and v3.1.

{
"documents": [
{
"language": "en",
"id": "1",
"text": "The restaurant had great food and our waiter was friendly."
}
1
}

Post the request

Analysis is performed upon receipt of the request. For information on the size and number of requests you can

send per minute and second, see the data limits section in the overview.

The Text Analytics APl is stateless. No data is stored in your account, and results are returned immediately in the

response.

View the results

Output is returned immediately. You can stream the results to an application that accepts JSON or save the
output to a file on the local system. Then, import the output into an application that you can use to sort, search,
and manipulate the data. Due to multilingual and emoji support, the response may contain text offsets. See how

to process offsets for more information.

e \ersion 3.1

e \ersion 3.0

Sentiment Analysis and Opinion Mining example response

IMPORTANT
The following is a JSON example for using Opinion Mining with Sentiment Analysis, offered in v3.1 of the API. If you don't

request Opinion mining, the API response will be the same as the Version 3.0 tab.

Sentiment Analysis v3.1 can return response objects for both Sentiment Analysis and Opinion Mining.

Sentiment analysis returns a sentiment label and confidence score for the entire document, and each sentence
within it. Scores closer to 1 indicate a higher confidence in the label's classification, while lower scores indicate
lower confidence. A document can have multiple sentences, and the confidence scores within each document or
sentence add up to 1.

Opinion Mining will locate targets (nouns or verbs) in the text, and their associated assessment (adjective). In the
below response, the sentence The restaurant had great food and our waiter was friendly has two targets: food
and waiter. Each target's relations property containsa ref value with the URI-reference to the associated

documents , sentences ,and assessments objects.

The API returns opinions as a target (noun or verb) and an assessment (adjective).

{
"documents": [
{

"id": "1",

"sentiment": "positive",

"confidenceScores": {
"positive": 1,
"neutral": o,
"negative": @

s

"sentences": [
{

"sentiment": "positive",

"confidenceScores": {
"positive": 1,
"neutral”: o,
"negative": @

}J

"offset": o,

"length": 58,

"text": "The restaurant had great food and our waiter was friendly.",

"targets": [
{
"sentiment": "positive",
"confidenceScores": {
"positive": 1,
"negative": ©
})
"offset": 25,
"length": 4,
"text": "food",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/@/sentences/0/assessments/0"

"sentiment": "positive",
"confidenceScores": {
"positive": 1,
"negative": @
})
"offset": 38,
"length": 6,
"text": "waiter",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/@/sentences/0/assessments/1"

3
])

J

1

"assessments": [

{
"sentiment": "positive",
"confidenceScores": {
"positive": 1,
"negative": @
s
"offset": 19,
"length": 5,
"text": "great",
"isNegated": false
})
{
"sentiment": "positive",
"confidenceScores": {
"positive": 1,
"negative": @
})
"offset": 49,
"length": 8,
"text": "friendly",
"isNegated": false
}

]

"warnings": []

}
1

"errors"

2 [

"modelVersion": "2020-04-01"

Summary

In this article, you learned concepts and workflow for sentiment analysis using the Text Analytics API. In

summary:

e Sentiment

e JSON documents in the request body include an ID, text, and language code.

e The POST requestistoa /sentiment endpoint by using a personalized access key and an endpoint that's

Analysis and Opinion Mining is available for select languages.

valid for your subscription.

e Use opinionMining=true in Sentiment Analysis requests to get Opinion Mining results.

e Response output, which consists of a sentiment score for each document ID, can be streamed to any app that
accepts JSON. For example, Excel and Power BI.

See also

Text Analytics overview
Using the Text Analytics client library
What's new

Model versions

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account

Example: How to extract key phrases using Text

Analytics

7/8/2021 4 minutes to read » Edit Online

The Key Phrase Extraction API evaluates unstructured text, and for each JSON document, returns a list of key
phrases.

This capability is useful if you need to quickly identify the main points in a collection of documents. For example,
given input text "The food was delicious and there were wonderful staff", the service returns the main talking
points: "food" and "wonderful staff".

For more information, see Supported languages.

TIP

® Text Analytics also provides a Linux-based Docker container image for key phrase extraction, so you can install and run
the Text Analytics container close to your data.

® You can also use this feature asynchronously using the /analyze endpoint.

Preparation

Key phrase extraction works best when you give it bigger amounts of text to work on. This is opposite from
sentiment analysis, which performs better on smaller amounts of text. To get the best results from both
operations, consider restructuring the inputs accordingly.

You must have JSON documents in this format: ID, text, language

Document size must be 5,120 or fewer characters per document, and you can have up to 1,000 items (IDs) per
collection. The collection is submitted in the body of the request. The following example is an illustration of
content you might submit for key phrase extraction.

See How to call the Text Analytics APl for more information on request and response objects.

Example synchronous request object

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-keyword-extraction.md
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases

"documents": [

{
"language": "en",
"id": "1",
"text": "We love this trail and make the trip every year. The views are breathtaking and
well worth the hike!"
s
{
"language": "en",
"id": "2",
"text": "Poorly marked trails! I thought we were goners. Worst hike ever."
s
{
"language": "en",
"id": "3",

"text": "Everyone in my family liked the trail but thought it was too challenging for the
less athletic among us. Not necessarily recommended for small children."

s
{
"language": "en",
"id": "4",
"text": "It was foggy so we missed the spectacular views, but the trail was ok. Worth
checking out if you are in the area."
s
{
"language": "en",
"id": "5",
"text": "This is my favorite trail. It has beautiful views and many places to stop and rest"
}

Example asynchronous request object

Starting in v3.1, You can send NER requests asynchronously using the /analyze endpoint.

{
"displayName":"MyJob",
"analysisInput":{
"documents": [

{
"id":"doc1",
"text":"It's incredibly sunny outside! I'm so happy"
s
{
"id":"doc2",
"text":"Pike place market is my favorite Seattle attraction.”
}
1
s
"tasks": {
"keyPhraseExtractionTasks": [{
"parameters": {
"model-version": "latest"
}
1,
}
}

Step 1: Structure the request

For information about request definition, see How to call the Text Analytics API. The following points are restated

for convenience:

e Create a POST request. Review the APl documentation for this request: Key Phrases API.

e Set the HTTP endpoint for key phrase extraction by using either a Text Analytics resource on Azure or an
instantiated Text Analytics container. if you're using the API synchronously, you must include
/text/analytics/v3.1/keyPhrases inthe URL. For example:

https://<your-custom-subdomain>.api.cognitiveservices.azure.com/text/analytics/v3.1/keyPhrases .
e Setarequest header to include the access key for Text Analytics operations.

e In the request body, provide the JSON documents collection you prepared for this analysis.

TIP

Use Postman or open the API testing console in the documentation to structure a request and POST it to the service.

Step 2: Post the request

Analysis is performed upon receipt of the request. For information about the size and number of requests you
can send per minute or per second, see the data limits article.

Recall that the service is stateless. No data is stored in your account. Results are returned immediately in the
response.

Step 3: View results

All POST requests return a JSON formatted response with the IDs and detected properties. The order of the
returned key phrases is determined internally, by the model.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the
output to a file on the local system, and then import it into an application that allows you to sort, search, and
manipulate the data.

An example of the output for key phrase extraction from the v3.1 endpoint is shown here:

Synchronous result

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases

"documents": [
{

"id": "1",

"keyPhrases": [
"trail®,
"trip",
"views",
"hike"

])

"warnings": []

"id": "2",

"keyPhrases": [
"Worst hike",
"trails"

1

"warnings": []

TiePg P87,
"keyPhrases": [
"less athletic",
"small children",
"Everyone",
"family",
"trail®
1,

"warnings": []

"id": "4",

"keyPhrases": [
"spectacular views",
"trail"”,

"area"

]J

"warnings": []

"id": "5",

"keyPhrases": [
"favorite trail"”,
"beautiful views",
"many places”

1

"warnings": []

]J
"errors": [],
"modelVersion": "2021-06-01"

As noted, the analyzer finds and discards non-essential words, and it keeps single terms or phrases that appear
to be the subject or object of a sentence.

Asynchronous result

If you use the /analyze endpoint for asynchronous operation, you will get a response containing the tasks you
sent to the API.

"jobId": "faB813c9a-0d96-4a34-8e4f-a2a682419190",
"lastUpdateDateTime": "2021-07-07T18:16:45Z",
"createdDateTime": "2021-07-07T18:16:1572",
"expirationDateTime": "2021-07-08T18:16:15Z",
"status": "succeeded",

"errors": [],

"displayName": "MyJob",

"tasks": {
"completed": 1,
"failed": o,
"inProgress": 0,
"total": 1,
"keyPhraseExtractionTasks": [
{
"lastUpdateDateTime": "2021-07-07T18:16:45.0623454Z",
"taskName": "KeyPhraseExtraction_latest",
"state": "succeeded",
"results": {
"documents": [
{
"id": "docl",
"keyPhrases": [],
"warnings": []
s
{
"id": "doc2",
"keyPhrases": [
"Pike place market",
"Seattle attraction”,
"favorite"
1,
"warnings": []
}
]J
"errors": [],
"modelVersion": "2021-06-01"
}
}
1
}
}
Summary

In this article, you learned concepts and workflow for key phrase extraction by using Text Analytics in Cognitive

Services. In summary:

e Key phrase extraction APl is available for selected languages.

e JSON documents in the request body include an ID, text, and language code.

e POSTrequestis toa /keyphrases Or /analyze endpoint, using a personalized access key and an endpoint
that is valid for your subscription.

e Response output, which consists of key words and phrases for each document ID, can be streamed to any
app that accepts JSON, including Microsoft Office Excel and Power BI, to name a few.

See also

Text Analytics overview Frequently asked questions (FAQ)

Text Analytics product page

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/KeyPhrases
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/text-analytics-resource-faq.html#body
https://go.microsoft.com/fwlink/?linkid=759712

Next steps

Text Analytics overview

Using the Text Analytics client library

What's new

Model versions

How to use Named Entity Recognition in Text

Analytics

7/8/2021 8 minutes to read » Edit Online

The Text Analytics API lets you takes unstructured text and returns a list of disambiguated entities, with links to
more information on the web. The APl supports both named entity recognition (NER) for several entity
categories, and entity linking.

Entity Linking

Entity linking is the ability to identify and disambiguate the identity of an entity found in text (for example,
determining whether an occurrence of the word "Mars" refers to the planet, or to the Roman god of war). This
process requires the presence of a knowledge base in an appropriate language, to link recognized entities in
text. Entity Linking uses Wikipedia as this knowledge base.

Named Entity Recognition (NER)

Named Entity Recognition (NER) is the ability to identify different entities in text and categorize them into pre-
defined classes or types such as: person, location, event, product, and organization.

Personally Identifiable Information (PII)

The PIl feature is part of NER and it can identify and redact sensitive entities in text that are associated with an
individual person such as: phone number, email address, mailing address, passport number.

Named Entity Recognition features and versions

FEATURE NER V3.0 NER V3.1
Methods for single, and batch X X
requests

Expanded entity recognition across X X

several categories

Separate endpoints for sending entity X X
linking and NER requests.

Recognition of personal (P11) and X
health (pHI) information entities

Redaction of P11 X

See language support for information.

Named Entity Recognition v3 provides expanded detection across multiple types. Currently, NER v3.0 can
recognize entities in the general entity category.

Named Entity Recognition v3.1 includes the detection capabilities of v3.0, and:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-entity-linking.md
https://www.wikipedia.org/

e The ability to detect personal information (PII) using the v3.1/entities/recognition/pii endpoint.
e An optional domain=phi parameter to detect confidential health information (pHI).

e Asynchronous operation using the /analyze endpoint.

For more information, see the entity categories article, and request endpoints section below. For more

information on confidence scores, see the Text Analytics transparency note.

Sending a REST API request

Preparation

You must have JSON documents in this format: ID, text, language.

Each document must be under 5,120 characters, and you can have up to 1,000 items (IDs) per collection. The

collection is submitted in the body of the request.

Structure the request

Create a POST request. You can use Postman or the API testing console in the following links to quickly
structure and send one.

NOTE

You can find your key and endpoint for your Text Analytics resource on the azure portal. They will be located on the
resource's Quick start page, under resource management.

Request endpoints

e \ersion 3.1

e \ersion 3.0

Named Entity Recognition v3.1 uses separate endpoints for NER, Pll, and entity linking requests. Use a URL

format below based on your request.

Entity linking

® https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/linking
Named Entity Recognition version 3.1 reference for Linking

Named Entity Recognition

e General entities -

https://<your-custom-
subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/general

Named Entity Recognition version 3.1 reference for General
Personally Identifiable Information (PII)

e Personal (p1I) information -

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/pii

You can also use the optional domain=phi parameter to detect health (PHI) information in text.

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/pii?
domain=phi

Startingin v3.1, The JSON response includes a redactedText property, which contains the modified input text

where the detected Pll entities are replaced by an * for each character in the entities.

https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note?context=/azure/cognitive-services/text-analytics/context/context
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/EntitiesLinking
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/EntitiesRecognitionGeneral

Named Entity Recognition version 3.1 reference for P11

The APl will attempt to detect the listed entity categories for a given document language. If you want to specify
which entities will be detected and returned, use the optional piicategories parameter with the appropriate
entity categories. This parameter can also let you detect entities that aren't enabled by default for your
document language. The following example would detect a French driver's license number that might occur in
English text, along with the default English entities.

TIP

If you don't include default when specifying entity categories, The APl will only return the entity categories you specify.

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/recognition/pii?
piiCategories=default,FRDriversLicenseNumber

Asynchronous operation
Startingin v3.1, You can send NER and entity linking requests asynchronously using the /analyze endpoint.

e Asynchronous operation -

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/analyze

See How to call the Text Analytics API for information on sending asynchronous requests.

Set a request header to include your Text Analytics API key. In the request body, provide the JSON documents
you prepared.

Example requests

e Version 3.1

e Version 3.0

Example synchronous NER request

The following JSON is an example of content you might send to the API. The request format is the same for both
versions of the API.

{
"documents": [
{
"id": "1",
"language": "en",
"text": "Our tour guide took us up the Space Needle during our trip to Seattle last week."
}
]
}

Example synchronous Pl request

The following JSON is an example of content you might send to the API to detect PIl in text.

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/EntitiesRecognitionPii

"documents": [

{
"id": "1",
"language": "en",
"text": "You can even pre-order from their online menu at www.contososteakhouse.com, call 312-555-

0176 or send email to order@contososteakhouse.com!”

}

Example asynchronous NER request

If you use the /analyze endpoint for asynchronous operation, you will get a response containing the tasks you
sent to the API.

{
"displayName":"MyJob",
"analysisInput":{
"documents":[

{
"id":"doc1",
"text":"It's incredibly sunny outside! I'm so happy"
s
{
"id":"doc2",
"text":"Pike place market is my favorite Seattle attraction.”
}
1
})
"tasks": {
"entityRecognitionTasks": [
{
"parameters": {
"model-version": "latest"
}
}
])
"entityRecognitionPiiTasks": [{
"parameters": {
"model-version": "latest"
}
3
}
}

Post the request

Analysis is performed upon receipt of the request. See the data limits article for information on the size and

number of requests you can send per minute and second.

The Text Analytics APl is stateless. No data is stored in your account, and results are returned immediately in the
response.

View results

All POST requests return a JSON formatted response with the IDs and detected entity properties.

Output is returned immediately. You can stream the results to an application that accepts JSON or save the
output to a file on the local system, and then import it into an application that allows you to sort, search, and
manipulate the data. Due to multilingual and emoji support, the response may contain text offsets. For more

information, see how to process text offsets.

Example responses

Version 3 provides separate endpoints for general NER, Pll, and entity linking. Version 3.1-pareview includes an
asynchronous Analyze mode. The responses for these operations are below.

e \ersion 3.1

e \ersion 3.0

Synchronous example results

Example of a general NER response:

{
"documents": [
{
"id": "1i",
"entities": [
{
"text": "tour guide",
"category”: "PersonType",
"offset": 4,
"length": 10,
"confidenceScore": 0.94
s
{
"text": "Space Needle",
"category": "Location",
"offset": 30,
"length": 12,
"confidenceScore": 0.96
1
{
"text": "Seattle",
"category": "Location",
"subcategory": "GPE",
"offset": 62,
"length": 7,
"confidenceScore": 1.0
1
{
"text": "last week",
"category": "DateTime",
"subcategory": "DateRange",
"offset": 70,
"length": 9,
"confidenceScore": 0.8
}
])
"warnings": []
}
1,
"errors": [],
"modelVersion": "2021-06-01"
}

Example of a Pll response:

"documents": [

{
"redactedText": "You can even pre-order from their online menu at www.contososteakhouse.com,
Call 3k >k 3k 3k 3k 5k %k %k k k k% or Send email tO ***************************!",
"id": "1",
"entities": [
{
"text": "312-555-0176",
"category": "PhoneNumber",
"offset": 81,
"length": 12,
"confidenceScore": 0.8
})
{
"text": "order@contososteakhouse.com",
"category": "Email",
"offset": 111,
"length": 27,
"confidenceScore": 0.8
s
{
"text": "contososteakhouse",
"category": "Organization",
"offset": 117,
"length": 17,
"confidenceScore": 0.45
}
1,
"warnings": []
}

])
"errors": [],
"modelVersion": "2021-01-15"

Example of an Entity linking response:

"documents": [

{
"id": "1",
"entities": [
{
"bingId": "f8dd5b08-206d-2554-6e4a-893f51f4de7e",
"name": "Space Needle",
"matches": [
{
"text": "Space Needle",
"offset": 30,
"length": 12,
"confidenceScore": 0.4
}
])
"language": "en",
"id": "Space Needle",
"url": "https://en.wikipedia.org/wiki/Space_Needle",
"dataSource": "Wikipedia"
s
{
"bingId": "5fbba6b8-85el1-4d41-9444-d9055436e473",
"name": "Seattle",
"matches": [
{
"text": "Seattle",
"offset": 62,
"length": 7,
"confidenceScore": 0.25
}
1,
"language": "en",
"id": "Seattle",
"url": "https://en.wikipedia.org/wiki/Seattle",
"dataSource": "Wikipedia"
}
1,
"warnings": []
}

1,
"errors": [],
"modelVersion": "2021-06-01"

Example asynchronous result

"jobId": "f480elf9-0b61-4d47-93da-240f084582cf",
"lastUpdateDateTime": "2021-07-06T19:03:15Z",
"createdDateTime": "2021-07-06T19:02:47Z",
"expirationDateTime": "2021-07-07T19:02:47Z",
"status": "succeeded",

"errors": [],

"displayName": "MyJob",

"tasks": {
"completed": 2,
"failed": o,
"inProgress": 0O,
"total": 2,
"entityRecognitionTasks": [
{
"lastUpdateDateTime": "2021-07-06T19:03:15.212633Z",
"taskName": "NamedEntityRecognition_latest",
"state": "succeeded",

"results": {

"documents": [

{
"id": "doc1",
"entities": [],
"warnings": []
1
{
"id": "doc2",
"entities": [
{
"text": "Pike place market",
"category": "Location",
"offset": O,
"length": 17,
"confidenceScore": 0.95
1
{
"text": "Seattle",
"category": "Location",
"subcategory": "GPE",
"offset": 33,
"length": 7,
"confidenceScore": 0.99
}
1,
"warnings": []
}

])
"errors": [],
"modelVersion": "2021-06-01"

}
}
1,
"entityRecognitionPiiTasks": [
{
"lastUpdateDateTime": "2021-07-06T19:03:03.2063832Z",
"taskName": "PersonallyIdentifiableInformation_latest",
"state": "succeeded",
"results": {
"documents": [
{
"redactedText": "It's incredibly sunny outside! I'm so happy",
"id": "docl",
"entities": [],
"warnings": []
})
{
"redactedText": "Pike place market is my favorite Seattle attraction.”,
"id": "doc2",
"entities": [],
"warnings": []
}
1,
"errors": [],
"modelVersion": "2021-01-15"
}
}
1
}
}
Summary

In this article, you learned concepts and workflow for entity linking using Text Analytics in Cognitive Services. In

summary:

e JSON documents in the request body include an ID, text, and language code.

e POST requests are sent to one or more endpoints, using a personalized access key and an endpoint that is
valid for your subscription.

e Response output, which consists of linked entities (including confidence scores, offsets, and web links, for
each document ID) can be used in any application

Next steps

Text Analytics overview

Using the Text Analytics client library

Model versions

What's new

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account

How to: Use Text Analytics for health

7/8/2021 « 9 minutes to read ¢ Edit Online

IMPORTANT

Text Analytics for health is a capability provided "AS IS” and “WITH ALL FAULTS! Text Analytics for health is not intended or
made available for use as a medical device, clinical support, diagnostic tool, or other technology intended to be used in
the diagnosis, cure, mitigation, treatment, or prevention of disease or other conditions, and no license or right is granted
by Microsoft to use this capability for such purposes. This capability is not designed or intended to be implemented or
deployed as a substitute for professional medical advice or healthcare opinion, diagnosis, treatment, or the clinical
judgment of a healthcare professional, and should not be used as such. The customer is solely responsible for any use of
Text Analytics for health. The customer must separately license any and all source vocabularies it intends to use under the
terms set for that UMLS Metathesaurus License Agreement Appendix or any future equivalent link. The customer is

responsible for ensuring compliance with those license terms, including any geographic or other applicable restrictions.

Text Analytics for health is a feature of the Text Analytics API service that extracts and labels relevant medical
information from unstructured texts such as doctor's notes, discharge summaries, clinical documents, and
electronic health records. There are two ways to utilize this service:

e The web-based API (asynchronous)

e A Docker container (synchronous)

Features

Text Analytics for health performs Named Entity Recognition (NER), relation extraction, entity negation and entity
linking on English-language text to uncover insights in unstructured clinical and biomedical text.

Named Entity Recognition

Relation Extraction

Entity Linking

Assertion Detection

Named Entity Recognition detects words and phrases mentioned in unstructured text that can be associated
with one or more semantic types, such as diagnosis, medication name, symptom/sign, or age.

Ribavirin was also evaluated against SARS-CoV-2 infection , but the antiviral

MEDICATION_NAME DIAGNOSIS MEDICATION_CLASS

property of drugs is still not well established against the SARS-CoV-2 :

TREATMENT_NAME DIAGNOSIS
In addition, after oral administration, the drug was rapidly absorbed into the Gl tract :
R T T T
ROUTE_OR_MODE BODY_STRUCTURE
The drug has oral bicavailability around 64 % with large volume of distribution.

B =
ROUTE_OR_MODE EXAMINATION_VALUE EXAMINATION_UNIT

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-for-health.md
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/license_agreement_appendix.html
https://channel9.msdn.com/Shows/AI-Show/Introducing-Text-Analytics-for-Health/player?nocookie=true

See the entity categories returned by Text Analytics for health for a full list of supported entities. For information

on confidence scores, see the Text Analytics transparency note.

Supported languages

Text Analytics for health only supports English language documents.

Using the Docker container

To run the Text Analytics for health container in your own environment, follow these instructions to download
and install the container.

Using the client library

The latest prerelease of the Text Analytics client library enables you to call Text Analytics for health using a client
object. Refer to the reference documentation, and see the examples on GitHub:

o C#
e Python

® Java

Sending a REST API request

Preparation

You must have JSON documents in this format: ID, text, and language.

Document size must be under 5,120 characters per document. For the maximum number of documents
permitted in a collection, see the data limits article under Concepts. The collection is submitted in the body of
the request. If your text exceeds this limit, consider splitting the text into separate requests. For best results, split
text between sentences.

Structure the API request for the hosted asynchronous web API

For both the container and hosted web API, you must create a POST request. You can use Postman, a cURL

command or the API testing console in the Text Analytics for health hosted API reference to quickly construct

and send a POST request to the hosted web API in your desired region. In the APl v3.1 endpoint, the
loggingoptout boolean query parameter can be used to enable logging for troubleshooting purposes. It's

default is TRUE if not specified in the request query.

Send the POST request to
https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/health/jobs Below is

an example of a JSON file attached to the Text Analytics for health API request's POST body:

example.json

{
"documents": [
{
"language": "en",
"id": "1",
"text": "Subject was administered 100mg remdesivir intravenously over a period of 120 min"
}
1
}

Hosted asynchronous web API response

Since this POST request is used to submit a job for the asynchronous operation, there is no text in the response

https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note#general-guidelines-to-understand-and-improve-performance?context=/azure/cognitive-services/text-analytics/context/context
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/textanalytics/Azure.AI.TextAnalytics
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/textanalytics/azure-ai-textanalytics/
https://github.com/Azure/azure-sdk-for-java/tree/master/sdk/textanalytics/azure-ai-textanalytics
https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Health

object. However, you need the value of the operation-location KEY in the response headers to make a GET
request to check the status of the job and the output. Below is an example of the value of the operation-location
KEY in the response header of the POST request:

https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/entities/health/jobs/<jobID>

To check the job status, make a GET request to the URL in the value of the operation-location KEY header of the
POST response. The following states are used to reflect the status of a job: NotStarted , running , succeeded ,

failed , rejected, cancelling ,and cancelled .

You can cancel a job with a Notstarted or running status with a DELETE HTTP call to the same URL as the GET
request. More information on the DELETE call is available in the Text Analytics for health hosted API reference.

The following is an example of the response of a GET request. The output is available for retrieval until the
expirationDateTime (24 hours from the time the job was created) has passed after which the output is purged.

"jobId": "69081148-055b-4f92-977d-115df343de69",
"lastUpdateDateTime": "2021-07-06T19:06:03Z",
"createdDateTime": "2021-07-06T19:05:41Z2",
"expirationDateTime": "2021-07-07T19:05:41Z",
"status": "succeeded",
"errors": [],
"results": {

"documents": [

{
"id": "1",
"entities": [
{
"offset": 25,
"length": 5,
"text": "100mg",
"category": "Dosage",
"confidenceScore": 1.0
}J
{
"offset": 31,
"length": 10,
"text": "remdesivir",
"category": "MedicationName",
"confidenceScore": 1.0,
"name": "remdesivir",
"links": [
{

"dataSource": "UMLS",
"id": "C4726677"

})

{
"dataSource": "DRUGBANK",
"id": "DB14761"

})

{
"dataSource": "GS",
"id": "6192"

})

{
"dataSource": "MEDCIN",
"id": "398132"

1

{
"dataSource": "MMSL",
"id": "de9s540"

1

{

"dataSource": "MSH",

Nian. WeAAnFAFFran

https://westus2.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/CancelHealthJob

10 LYYYyowYod> L

s
{
"dataSource": "MTHSPL",
"id": "3QKI37EEHE"
s
{
"dataSource": "NCI",
"id": "C152185"
s
{
"dataSource": "NCI_FDA",
"id": "3QKI37EEHE"
s
{
"dataSource™: "NDDF",
"id": "018308"
s
{
"dataSource": "RXNORM",
"id": "2284718"
s
{
"dataSource"”: "SNOMEDCT_US",
"id": "870592005"
s
{
"dataSource": "VANDF",
"id": "4039395"
}
1
s
{
"offset": 42,
"length": 13,
"text": "intravenously",
"category": "MedicationRoute",
"confidenceScore": 0.99
s
{
"offset": 73,
"length": 7,
"text": "120 min",
"category": "Time",
"confidenceScore": 0.98
}
1,
"relations": [
{
"relationType": "DosageOfMedication",
"entities": [
{
"ref": "#/results/documents/@/entities/0",
"role": "Dosage"
s
{
"ref": "#/results/documents/@/entities/1",
"role": "Medication"
}
1
s
{
"relationType": "RouteOfMedication”,
"entities": [
{
"ref": "#/results/documents/@/entities/1",
"role": "Medication”
s

{

"ref": "#/results/documents/0@/entities/2",

"role": "Route"
}
1
s
{
"relationType": "TimeOfMedication",
"entities": [
{
"ref": "#/results/documents/@/entities/1",
"role": "Medication”
s
{
"ref": "#/results/documents/0/entities/3",
"role": "Time"
}
1
}

])

"warnings": []

1,
"errors": [],
"modelVersion": "2021-05-15"

Structure the API request for the container

You can use Postman or the example cURL request below to submit a query to the container you deployed,
replacing the serverURL variable with the appropriate value. Note the version of the API in the URL for the
container is different than the hosted API.

curl -X POST 'http://<serverURL>:5000/text/analytics/v3.1/entities/health' --header 'Content-Type:
application/json' --header 'accept: application/json' --data-binary @example.json

The following JSON is an example of a JSON file attached to the Text Analytics for health APl request's POST
body:

example.json

{
"documents": [
{
"language": "en",
"id": "1",
"text": "Patient reported itchy sores after swimming in the lake."
s
{
"language": "en",
"id": "2",
"text": "Prescribed 50mg benadryl, taken twice daily."
}
1
}

Container response body

The following JSON is an example of the Text Analytics for health API response body from the containerized
synchronous call:

"documents": [

{

"id":

g

"entities": [

{

"offset": 25,
"length": 5,

"text": "leemg",
"category": "Dosage",

"confidenceScore": 1.0

"offset": 31,
"length": 10,

"text":

"remdesivir",

"category": "MedicationName",

"confidenceScore": 1.0,

"name": "remdesivir",
"links": [

{
"dataSource": "UMLS",
"id": "C4726677"

s

{
"dataSource": "DRUGBANK",
"id": "DB14761"

s

{
"dataSource": "GS",
"id": "6192"

s

{
"dataSource": "MEDCIN",
"id": "398132"

}J

{
"dataSource": "MMSL",
"id": "de9s54e"

})

{
"dataSource": "MSH",
"id": "C000606551"

})

{
"dataSource": "MTHSPL",
"id": "3QKI37EEHE"

})

{
"dataSource": "NCI",
"id": "C152185"

})

{
"dataSource": "NCI_FDA",
"id": "3QKI37EEHE"

})

{
"dataSource": "NDDF",
"id": "@18308"

})

{
"dataSource": "RXNORM",
"id": "2284718"

1

{
"dataSource": "SNOMEDCT_US",
"id": "870592005"

1

{

"dataSource": "VANDF",

"id": "4039395"
}
]
s
{
"offset": 42,
"length": 13,
"text": "intravenously",
"category": "MedicationRoute",
"confidenceScore": 1.0
s
{
"offset": 73,
"length": 7,
"text": "120 min",
"category": "Time",
"confidenceScore": 0.94
}
1,
"relations": [
{
"relationType": "DosageOfMedication",
"entities": [
{
"ref": "#/documents/0/entities/0",
"role": "Dosage"
s
{
"ref": "#/documents/0/entities/1",
"role": "Medication”
}
]
s
{
"relationType": "RouteOfMedication",
"entities": [
{
"ref": "#/documents/0/entities/1",
"role": "Medication"
s
{
"ref": "#/documents/0/entities/2",
"role": "Route"
}
1
s
{
"relationType": "TimeOfMedication",
"entities": [
{
"ref": "#/documents/@/entities/1",
"role": "Medication"
s
{
"ref": "#/documents/@/entities/3",
"role": "Time"
}
1
}
1,
"warnings": []
}
1,
"errors": [],
"modelVersion": "2021-03-01"

Assertion output

Text Analytics for health returns assertion modifiers, which are informative attributes assigned to medical
concepts that provide deeper understanding of the concepts’ context within the text. These modifiers are divided
into three categories, each focusing on a different aspect, and containing a set of mutually exclusive values. Only
one value per category is assigned to each entity. The most common value for each category is the Default
value. The service's output response contains only assertion modifiers that are different from the default value.

CERTAINTY - provides information regarding the presence (present vs. absent) of the concept and how certain
the text is regarding its presence (definite vs. possible).

e Positive [Default]: the concept exists or happened.

e Negative: the concept does not exist now or never happened.

e Positive_Possible: the concept likely exists but there is some uncertainty.

e Negative_Possible: the concept’s existence is unlikely but there is some uncertainty.

e Neutral_Possible: the concept may or may not exist without a tendency to either side.

CONDITIONALITY - provides information regarding whether the existence of a concept depends on certain
conditions.

e None [Default]: the concept is a fact and not hypothetical and does not depend on certain conditions.
e Hypothetical: the concept may develop or occur in the future.

e Conditional: the concept exists or occurs only under certain conditions.

ASSOCIATION - describes whether the concept is associated with the subject of the text or someone else.

e Subject [Default]: the concept is associated with the subject of the text, usually the patient.

e Someone_Else: the concept is associated with someone who is not the subject of the text.

Assertion detection represents negated entities as a negative value for the certainty category, for example:

"offset": 381,

"length": 3,

"text": "SOB",

"category": "SymptomOrSign",
"confidenceScore": 0.98,
"assertion": {

"certainty": "negative"
s
"name": "Dyspnea",
"links": [

{

"dataSource": "UMLS",
"id": "Cee134e4"

})
{
"dataSource": "AOD",
"id": "0000005442"
})

Relation extraction output

Text Analytics for Health recognizes relations between different concepts, including relations between attribute
and entity (for example, direction of body structure, dosage of medication) and between entities (for example,
abbreviation detection).

ABBREVIATION

BODY_SITE_OF_CONDITION

BODY_SITE_OF_TREATMENT
COURSE_OF_CONDITION
COURSE_OF_EXAMINATION
COURSE_OF_MEDICATION
COURSE_OF_TREATMENT
DIRECTION_OF_BODY_STRUCTURE
DIRECTION_OF_CONDITION
DIRECTION_OF_EXAMINATION
DIRECTION_OF_TREATMENT
DOSAGE_OF_MEDICATION
EXAMINATION_FINDS_CONDITION
EXPRESSION_OF_GENE
EXPRESSION_OF_VARIANT
FORM_OF_MEDICATION
FREQUENCY_OF_CONDITION
FREQUENCY_OF_MEDICATION
FREQUENCY_OF_TREATMENT
MUTATION_TYPE_OF_GENE
MUTATION_TYPE_OF_VARIANT
QUALIFIER_OF_CONDITION
RELATION_OF_EXAMINATION
ROUTE_OF_MEDICATION
SCALE_OF_CONDITION
TIME_OF_CONDITION
TIME_OF_EVENT
TIME_OF_EXAMINATION
TIME_OF_MEDICATION
TIME_OF_TREATMENT
UNIT_OF_CONDITION
UNIT_OF_EXAMINATION
VALUE_OF_CONDITION
VALUE_OF_EXAMINATION

VARIANT_OF_GENE

NOTE

® Relations referring to CONDITION may refer to either the DIAGNOSIS entity type or the SYMPTOM_OR _SIGN entity
type.

® Relations referring to MEDICATION may refer to either the MEDICATION_NAME entity type or the
MEDICATION_CLASS entity type.

® Relations referring to TIME may refer to either the TIME entity type or the DATE entity type.

Relation extraction output contains URI references and assigned roles of the entities of the relation type. For

example:
"relations": [
{
"relationType": "DosageOfMedication",
"entities": [
{
"ref": "#/results/documents/@/entities/0",
"role": "Dosage"
s
{
"ref": "#/results/documents/@/entities/1",
"role": "Medication"
}
1
s
{
"relationType": "RouteOfMedication"”,
"entities": [
{
"ref": "#/results/documents/0/entities/1",
"role": "Medication"
s
{
"ref": "#/results/documents/0/entities/2",
"role": "Route"
}
1
]
See also

e Text Analytics overview
e Named Entity categories

o What's new

Install and run Text Analytics containers

7/22/2021 « 18 minutes to read « Edit Online

Containers enable you to run the Text Analytic APIs in your own environment and are great for your specific
security and data governance requirements. The following Text Analytics containers are available:

e sentiment analysis
e |anguage detection
e key phrase extraction (preview)

e Text Analytics for health

NOTE

® Entity linking and NER are not currently available as a container.
® The container image locations may have recently changed. Read this article to see the updated location for this
container.

® The free account is limited to 5,000 text records per month and only the Free and Standard pricing tiers are valid for
containers. For more information on transaction request rates, see Data Limits.

Containers enable you to run the Text Analytic APIs in your own environment and are great for your specific
security and data governance requirements. The Text Analytics containers provide advanced natural language
processing over raw text, and include three main functions: sentiment analysis, key phrase extraction, and
language detection.

If you don't have an Azure subscription, create a free account before you begin.

Prerequisites

You must meet the following prerequisites before using Text Analytics containers. If you don't have an Azure
subscription, create a free account before you begin.

e Docker installed on a host computer. Docker must be configured to allow the containers to connect with and
send billing data to Azure.

o On Windows, Docker must also be configured to support Linux containers.
o You should have a basic understanding of Docker concepts.

e A Text Analytics resource with the free (FO) or standard (S) pricing tier.

Gathering required parameters

There are three primary parameters for all Cognitive Services' containers that are required. The end-user license
agreement (EULA) must be present with a value of accept . Additionally, both an Endpoint URL and API Key are
needed.

Endpoint URI {ENDPOINT_URI}

The Endpoint URI value is available on the Azure portal Overview page of the corresponding Cognitive Service
resource. Navigate to the Overview page, hover over the Endpoint, and a copy to clipboard icon will appear.
Copy and use where needed.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-install-containers.md
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics
https://azure.microsoft.com/free/cognitive-services/
https://azure.microsoft.com/free/cognitive-services/
https://docs.docker.com/
https://docs.docker.com/get-started/overview/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/

Home > widgets

d5p widgets

Cognitive Services

| 0 Search (Cerl+/)

il Delete

W Activity log
.-..'. Access control (JAM)
L4 Tags
Diagnose and solve problems
RESOURCE MANAGEMENT

Keys
“4 Quick start

" Pricing tier

@ Billing By Subscription

@ Overview h

Resource group (change)
widgets-resource-group

Status
Active

Location
North Central US

Subscription (change)
widgets-subscription

Subscription ID

Tags (change)
Click here to add tags

API type
<API Type=

Pricing tier

Standard

Endpoint
https://widgets.cognitiveservices.azure.com/

Manage keys
Show access keys ...

)py to clipboard

bpifexample-endpoint [

Keys {API_KEY}

This key is used to start the container, and is available on the Azure portal's Keys page of the corresponding

Cognitive Service resource. Navigate to the Keys page, and click on the copy to clipboard icon.

Home > widgets - Keys

widgets - Keys

Cognitive Services

[o Search (cirt+p

& Overview
W Activity log
4 Access control (IAM)

& Tags

K Diagnose and solve problems

RESOURCE MANAGEMENT

Keys h
4 Quick start
[Pricing tier

@ Billing By Subscription

] Regenerate Keyl

MNAME

& Regenerate Key2

[widgets

o

KEY 1

These subscription keys are used to access your Cognitive Service API. Do not share your keys. Store them securely— for example, using Azure Key Vault, We
alsa recommend regenerating these keys regularly. Only one key is necessary to make an AP call. When regenerating the first key, you can use the second
key for continued access to the service.

[<key 1 value»

@]

KEY 2

| <key 2 value>

IMPORTANT

These subscription keys are used to access your Cognitive Service APIl. Do not share your keys. Store them securely, for
example, using Azure Key Vault. We also recommend regenerating these keys regularly. Only one key is necessary to

make an API call. When regenerating the first key, you can use the second key for continued access to the service.

Host computer requirements and recommendations

The host is a x64-based computer that runs the Docker container. It can be a computer on your premises or a

Docker hosting service in Azure, such as:

o Azure Kubernetes Service.

o Azure Container Instances.

e A Kubernetes cluster deployed to Azure Stack. For more information, see Deploy Kubernetes to Azure Stack.

The following table describes the minimum and recommended specifications for the available Text Analytics

containers. Each CPU core must be at least 2.6 gigahertz (GHz) or faster. The allowable Transactions Per Second

(TPS) are also listed.

Language
detection

MINIMUM HOST
SPECS

1 core, 2GB memory

RECOMMENDED
HOST SPECS

1 core, 4GB memory

MINIMUM TPS

15

MAXIMUM TPS

30

https://docs.microsoft.com/en-us/azure/aks/index
https://docs.microsoft.com/en-us/azure/container-instances/index
https://kubernetes.io/
https://docs.microsoft.com/en-us/azure-stack/operator
https://docs.microsoft.com/en-us/azure-stack/user/azure-stack-solution-template-kubernetes-deploy

key phrase
extraction
(preview)

Sentiment
Analysis

Text Analytics for
health - 1
document/request

Text Analytics for

health - 10
documents/reques
t

MINIMUM HOST
SPECS

1 core, 2GB memory

1 core, 2GB memory

4 core, 10GB
memory

6 core, 16GB
memory

RECOMMENDED

HOST SPECS MINIMUM TPS MAXIMUM TPS
1 core, 4GB memory 15 30

4 cores, 8GB 15 30

memory

6 core, 12GB 15 30

memory

8 core, 20GB 15 30

memory

CPU core and memory correspond to the --cpus and --memory settings, which are used as part of the

docker run command.

Get the container image with docker pull

Sentiment Analysis

e Key Phrase Extraction (preview)

e |anguage Detection

Docker pull for the Sentiment Analysis v3 container

Text Analytics for health

The sentiment analysis container v3 container is available in several languages. To download the container for

the English container, use the command below.

docker pull mcr.microsoft.com/azure-cognitive-services/textanalytics/sentiment:3.0-en

To download the container for another language, replace en with one of the language codes below.

TEXT ANALYTICS CONTAINER

Chinese-Simplified

Chinese-Traditional

Dutch

English

French

German

Hindi

LANGUAGE CODE

zh-hans

zh-hant

nl

en

fr

de

hi

TEXT ANALYTICS CONTAINER LANGUAGE CODE

Italian it
Japanese ja
Korean ko
Norwegian (Bokmal) no
Portuguese (Brazil) pt-BR
Portuguese (Portugal) pt-PT
Spanish es
Turkish tr

For a full description of available tags for the Text Analytics containers, see Docker Hub.

TIP

You can use the docker images command to list your downloaded container images. For example, the following command
lists the ID, repository, and tag of each downloaded container image, formatted as a table:

docker images --format "table {{.ID}}\t{{.Repository}}\t{{.Tag}}"

IMAGE ID REPOSITORY TAG
<image-id> <repository-path/name> <tag-name>

Run the container with docker run

Once the container is on the host computer, use the docker run command to run the containers. The container

will continue to run until you stop it.

IMPORTANT
® The docker commands in the following sections use the back slash, \ , as a line continuation character. Replace or
remove this based on your host operating system's requirements.
® The Eula, Billing ,and Apikey options must be specified to run the container; otherwise, the container won't
start. For more information, see Billing.
o If you're using the Text Analytics for health container, the responsible Al (RAI) acknowledgment must also be
present with a value of accept .

® The sentiment analysis and language detection containers use v3 of the API, and are generally available. The key
phrase extraction container uses v2 of the API, and is in preview.

Sentiment Analysis
Key Phrase Extraction (preview)
Language Detection

Text Analytics for health

https://go.microsoft.com/fwlink/?linkid=2018654
https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.microsoft.com/en-us/legal/cognitive-services/text-analytics/transparency-note-health

To run the Sentiment Analysis v3 container, execute the following docker run command. Replace the
placeholders below with your own values:

PLACEHOLDER VALUE FORMAT OR EXAMPLE

{AP|_KEY} The key for your Text Analytics XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
resource. You can find it on your
resource's Key and endpoint page,
on the Azure portal.

{ENDPOINT_URI} The endpoint for accessing the Text https://<your-custom-
Analytics API. You can find it on your subdomain>.cognitiveservices.azure.com
resource's Key and endpoint page,
on the Azure portal.

docker run --rm -it -p 5000:5000 --memory 8g --cpus 1 \
mcr.microsoft.com/azure-cognitive-services/textanalytics/sentiment \
Eula=accept \

Billing={ENDPOINT_URI} \

ApiKey={API_KEY}

This command:

Runs a Sentiment Analysis container from the container image

Allocates one CPU core and 8 gigabytes (GB) of memory

Exposes TCP port 5000 and allocates a pseudo-TTY for the container

e Automatically removes the container after it exits. The container image is still available on the host computer.

Run multiple containers on the same host

If you intend to run multiple containers with exposed ports, make sure to run each container with a different
exposed port. For example, run the first container on port 5000 and the second container on port 5001.

You can have this container and a different Azure Cognitive Services container running on the HOST together.
You also can have multiple containers of the same Cognitive Services container running.

Query the container's prediction endpoint

The container provides REST-based query prediction endpoint APIs.

Use the host, nhttp://localhost:5000 , for container APIs.

Validate that a container is running

There are several ways to validate that the container is running. Locate the External IP address and exposed port
of the container in question, and open your favorite web browser. Use the various request URLs below to
validate the container is running. The example request URLs listed below are http://localhost:5eee , but your
specific container may vary. Keep in mind that you're to rely on your container's External IP address and exposed
port.

REQUEST URL PURPOSE

http://localhost:5000/ The container provides a home page.

REQUEST URL

http://localhost:5000/ready

http://localhost:5000/status

http://localhost:5000/swagger

& - C @ localhost:5000

A Microsoft Azure

Your Azure Cognitive
Service Container is up
and running

Learn more

Stop the container

PURPOSE

Requested with GET, this provides a verification that the
container is ready to accept a query against the model. This
request can be used for Kubernetes liveness and readiness
probes.

Also requested with GET, this verifies if the api-key used to
start the container is valid without causing an endpoint
query. This request can be used for Kubernetes liveness and
readiness probes.

The container provides a full set of documentation for the
endpoints and a Try it out feature. With this feature, you
can enter your settings into a web-based HTML form and
make the query without having to write any code. After the
query returns, an example CURL command is provided to
demonstrate the HTTP headers and body format that's
required.

To shut down the container, in the command-line environment where the container is running, select Ctrl+C.

Troubleshooting

If you run the container with an output mount and logging enabled, the container generates log files that are

helpful to troubleshoot issues that happen while starting or running the container.

TIP

For more troubleshooting information and guidance, see Cognitive Services containers frequently asked questions (FAQ).

Billing

The Text Analytics containers send billing information to Azure, using a 7ext Analytics resource on your Azure

account.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-faq

Queries to the container are billed at the pricing tier of the Azure resource that's used for the Apikey .

Azure Cognitive Services containers aren't licensed to run without being connected to the metering / billing
endpoint. You must enable the containers to communicate billing information with the billing endpoint at all
times. Cognitive Services containers don't send customer data, such as the image or text that's being analyzed,
to Microsoft.

Connect to Azure

The container needs the billing argument values to run. These values allow the container to connect to the
billing endpoint. The container reports usage about every 10 to 15 minutes. If the container doesn't connect to
Azure within the allowed time window, the container continues to run but doesn't serve queries until the billing
endpoint is restored. The connection is attempted 10 times at the same time interval of 10 to 15 minutes. If it
can't connect to the billing endpoint within the 10 tries, the container stops serving requests. See the Cognitive

Services container FAQ for an example of the information sent to Microsoft for billing.

Billing arguments

The docker run command will start the container when all three of the following options are provided with

valid values:
OPTION DESCRIPTION

Apikey The API key of the Cognitive Services resource that's used to
track billing information.
The value of this option must be set to an API key for the
provisioned resource that's specified in Billing .

Billing The endpoint of the Cognitive Services resource that's used
to track billing information.
The value of this option must be set to the endpoint URI of
a provisioned Azure resource.

Eula Indicates that you accepted the license for the container.

The value of this option must be set to accept.

For more information about these options, see Configure containers.

Summary

In this article, you learned concepts and workflow for downloading, installing, and running Text Analytics

containers. In summary:

e Text Analytics provides three Linux containers for Docker, encapsulating various capabilities:
o Sentiment Analysis
o Key Phrase Extraction (preview)
o Language Detection
o Text Analytics for health
e Container images are downloaded from the Microsoft Container Registry (MCR).
e Container images run in Docker.
e You can use either the REST API or SDK to call operations in Text Analytics containers by specifying the host
URI of the container.

e You must specify billing information when instantiating a container.

https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-faq
https://docs.docker.com/engine/reference/commandline/run/

IMPORTANT
Cognitive Services containers are not licensed to run without being connected to Azure for metering. Customers need to
enable the containers to communicate billing information with the metering service at all times. Cognitive Services

containers do not send customer data (e.g. text that is being analyzed) to Microsoft.

Next steps

e See Configure containers for configuration settings.

Configure Text Analytics docker containers

7/22/2021 « 6 minutes to read « Edit Online

Text Analytics provides each container with a common configuration framework, so that you can easily
configure and manage storage, logging and telemetry, and security settings for your containers. Several
example docker run commands are also available.

Configuration settings

The container has the following configuration settings:

REQUIRED SETTING PURPOSE

Yes ApiKey Tracks billing information.

No ApplicationInsights Enables adding Azure Application
Insights telemetry support to your
container.

Yes Billing Specifies the endpoint URI of the

service resource on Azure.

Yes Eula Indicates that you've accepted the
license for the container.

No Fluentd Writes log and, optionally, metric data
to a Fluentd server.

No HTTP Proxy Configures an HTTP proxy for making
outbound requests.

No Logging Provides ASPNET Core logging
support for your container.

No Mounts Reads and writes data from the host
computer to the container and from
the container back to the host
computer.

IMPORTANT

The Apikey , Billing ,and Eula settings are used together, and you must provide valid values for all three of them;
otherwise your container won't start. For more information about using these configuration settings to instantiate a
container, see Billing.

ApiKey configuration setting

The Apikey setting specifies the Azure resource key used to track billing information for the container. You must
specify a value for the ApiKey and the value must be a valid key for the 7ext Analytics resource specified for the
Billing configuration setting.

This setting can be found in the following place:

e Azure portal: Text Analytics resource management, under Keys

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/text-analytics-resource-container-config.md
https://docs.microsoft.com/en-us/azure/application-insights

Applicationlnsights setting

The ApplicationInsights setting allows you to add Azure Application Insights telemetry support to your
container. Application Insights provides in-depth monitoring of your container. You can easily monitor your
container for availability, performance, and usage. You can also quickly identify and diagnose errors in your
container.

The following table describes the configuration settings supported under the ApplicationInsights section.
REQUIRED NAME DATA TYPE DESCRIPTION

No InstrumentationKey String The instrumentation key of
the Application Insights
instance to which telemetry
data for the container is
sent. For more information,
see Application Insights for
ASPNET Core.

Example:
InstrumentationKey=123456789

Billing configuration setting

The Billing setting specifies the endpoint URI of the Text Analytics resource on Azure used to meter billing
information for the container. You must specify a value for this configuration setting, and the value must be a
valid endpoint URI for a _ 7ext Analytics resource on Azure. The container reports usage about every 10 to 15
minutes.

This setting can be found in the following place:

e Azure portal: Text Analytics Overview, labeled Endpoint
REQUIRED NAME DATA TYPE DESCRIPTION

Yes Billing String Billing endpoint URI. For
more information on
obtaining the billing URI,
see gathering required
parameters. For more
information and a complete
list of regional endpoints,
see Custom subdomain
names for Cognitive
Services.

Eula setting

The Eula setting indicates that you've accepted the license for the container. You must specify a value for this
configuration setting, and the value must be setto accept .

REQUIRED NAME DATA TYPE DESCRIPTION
Yes Eula String License acceptance
Example:

Eula=accept

Cognitive Services containers are licensed under your agreement governing your use of Azure. If you do not
have an existing agreement governing your use of Azure, you agree that your agreement governing use of

https://docs.microsoft.com/en-us/azure/application-insights
https://docs.microsoft.com/en-us/azure/azure-monitor/app/asp-net-core
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://go.microsoft.com/fwlink/?linkid=2018657

Azure is the Microsoft Online Subscription Agreement, which incorporates the Online Services Terms. For
previews, you also agree to the Supplemental Terms of Use for Microsoft Azure Previews. By using the container
you agree to these terms.

Fluentd settings

Fluentd is an open-source data collector for unified logging. The Fluentd settings manage the container's
connection to a Fluentd server. The container includes a Fluentd logging provider, which allows your container to
write logs and, optionally, metric data to a Fluentd server.

The following table describes the configuration settings supported under the Fluentd section.
NAME DATA TYPE DESCRIPTION

Host String The IP address or DNS host name of
the Fluentd server.

Port Integer The port of the Fluentd server.
The default value is 24224.

HeartbeatMs Integer The heartbeat interval, in milliseconds.
If no event traffic has been sent before
this interval expires, a heartbeat is sent
to the Fluentd server. The default value
is 60000 milliseconds (1 minute).

SendBuffersSize Integer The network buffer space, in bytes,
allocated for send operations. The
default value is 32768 bytes (32
kilobytes).

TlsConnectionEstablishmentTimeoutMs Integer The timeout, in milliseconds, to
establish a SSL/TLS connection with
the Fluentd server. The default value is
10000 milliseconds (10 seconds).

If useTLs is set to false, this value is
ignored.

UseTLS Boolean Indicates whether the container should
use SSL/TLS for communicating with
the Fluentd server. The default value is
false.

Http proxy credentials settings

If you need to configure an HTTP proxy for making outbound requests, use these two arguments:
NAME DATA TYPE DESCRIPTION

HTTP_PROXY string The proxy to use, for example,
http://proxy:8888

<proxy-url>

HTTP_PROXY_CREDS string Any credentials needed to authenticate
against the proxy, for example,
username:password . This value must
be in lower-case.

<proxy-user> string The user for the proxy.

https://go.microsoft.com/fwlink/?linkid=2018755
https://go.microsoft.com/fwlink/?linkid=2018760
https://go.microsoft.com/fwlink/?linkid=2018815
https://www.fluentd.org

NAME DATA TYPE DESCRIPTION

<proxy-password> string The password associated with
<proxy-user> for the proxy.

docker run --rm -it -p 5000:5000 \

--memory 2g --cpus 1 \

--mount type=bind,src=/home/azureuser/output,target=/output \
<registry-location>/<image-name> \

Eula=accept \

Billing=<endpoint> \

ApiKey=<api-key> \

HTTP_PROXY=<proxy-url> \
HTTP_PROXY_CREDS=<proxy-user>:<proxy-password> \

Logging settings

The Logging settings manage ASPNET Core logging support for your container. You can use the same
configuration settings and values for your container that you use for an ASPNET Core application.

The following logging providers are supported by the container:

PROVIDER PURPOSE

Console The ASPNET Core console logging provider. All of the
ASPNET Core configuration settings and default values for
this logging provider are supported.

Debug The ASPNET Core pebug logging provider. All of the
ASPNET Core configuration settings and default values for
this logging provider are supported.

Disk The JSON logging provider. This logging provider writes log
data to the output mount.

This container command stores logging information in the JSON format to the output mount:

docker run --rm -it -p 5000:5000 \

--memory 2g --cpus 1 \

--mount type=bind,src=/home/azureuser/output,target=/output \
<registry-location>/<image-name> \

Eula=accept \

Billing=<endpoint> \

ApiKey=<api-key> \

Logging:Disk:Format=json

This container command shows debugging information, prefixed with dbug , while the container is running:

docker run --rm -it -p 5000:5000 \
--memory 2g --cpus 1 \
<registry-location>/<image-name> \
Eula=accept \

Billing=<endpoint> \

ApiKey=<api-key> \
Logging:Console:LoglLevel:Default=Debug

Disk logging

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/#console-provider
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/#debug-provider

The bpisk logging provider supports the following configuration settings:
NAME DATA TYPE DESCRIPTION

Format String The output format for log files.
Note: This value must be set to json
to enable the logging provider. If this
value is specified without also
specifying an output mount while
instantiating a container, an error
occurs.

MaxFileSize Integer The maximum size, in megabytes (MB),
of a log file. When the size of the
current log file meets or exceeds this
value, a new log file is started by the
logging provider. If -1 is specified, the
size of the log file is limited only by the
maximum file size, if any, for the
output mount. The default value is 1.

For more information about configuring ASPNET Core logging support, see Settings file configuration.

Mount settings

Use bind mounts to read and write data to and from the container. You can specify an input mount or output

mount by specifying the --mount option in the docker run command.
The Text Analytics containers don't use input or output mounts to store training or service data.

The exact syntax of the host mount location varies depending on the host operating system. Additionally, the
host computer's mount location may not be accessible due to a conflict between permissions used by the docker
service account and the host mount location permissions.

OPTIONAL NAME DATA TYPE DESCRIPTION

Not allowed Input String Text Analytics containers do
not use this.

Optional Output String The target of the output

mount. The default value is
/output . This is the

location of the logs. This

includes container logs.

Example:

--mount
type=bind,src=c:\output,target=/outp

Next steps

® Review How to install and run containers

e Use more Cognitive Services Containers

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support

Deploy and run container on Azure Container

Instance

4/29/2021 « 7 minutes to read ¢ Edit Online

With the following steps, scale Azure Cognitive Services applications in the cloud easily with Azure Container
Instances. Containerization helps you focus on building your applications instead of managing the
infrastructure. For more information on using containers, see features and benefits.

Prerequisites

The recipe works with any Cognitive Services container. The Cognitive Service resource must be created before
using the recipe. Each Cognitive Service that supports containers has a "How to install" article for installing and
configuring the service for a container. Some services require a file or set of files as input for the container, it is
important that you understand and have used the container successfully before using this solution.

e An Azure resource for the Azure Cognitive Service you're using.

e Cognitive Service endpoint URL - review your specific service's "How to install" for the container, to find
where the endpoint URL is from within the Azure portal, and what a correct example of the URL looks
like. The exact format can change from service to service.

e Cognitive Service key - the keys are on the Keys page for the Azure resource. You only need one of the
two keys. The key is a string of 32 alpha-numeric characters.

e Asingle Cognitive Services Container on your local host (your computer). Make sure you can:

o Pull down the image with a docker pull command.

o Run the local container successfully with all required configuration settings with a docker run

command.

o Call the container's endpoint, getting a response of HTTP 2xx and a JSON response back.

All variables in angle brackets, <>, need to be replaced with your own values. This replacement includes the

angle brackets.

IMPORTANT

The LUIS container requires a .gz model file that is pulled in at runtime. The container must be able to access this model

file via a volume mount from the container instance. To upload a model file, follow these steps:

1. Create an Azure file share. Take note of the Azure Storage account name, key, and file share name as you'll need them
later.

2. export your LUIS model (packaged app) from the LUIS portal.
3. In the Azure portal, navigate to the Overview page of your storage account resource, and select File shares.

4. Select the file share name that you recently created, then select Upload. Then upload your packaged app.

e Azure portal
e CLI

Create an Azure Container Instance resource using the Azure portal

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/containers/azure-container-instance-recipe.md
https://docs.microsoft.com/en-us/azure/container-instances/index
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support
https://docs.microsoft.com/en-us/azure/storage/files/storage-how-to-create-file-share
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-container-howto

1. Go to the Create page for Container Instances.

2. On the Basics tab, enter the following details:

SETTING

Subscription

Resource group

Container name

Location

Image type

Image name

OS type

Size

3. Onthe Networking tab, enter the following details:

SETTING

VALUE

Select your subscription.

Select the available resource group or create a new one
such as cognitive-services .

Enter a name such as cognitive-container-instance

The name must be in lower caps.

Select a region for deployment.

If your container image is stored in a container registry
that doesn’t require credentials, choose Public . If
accessing your container image requires credentials,
choose Private . Refer to container repositories and
images for details on whether or not the container image
is Public or Private ("Public Preview").

Enter the Cognitive Services container location. The
location is what's used as an argument to the

docker pull command. Refer to the container
repositories and images for the available image names
and their corresponding repository.

The image name must be fully qualified specifying three
parts. First, the container registry, then the repository,
finally the image name:

<container-registry>/<repository>/<image-name> .

Here is an example,

mcr.microsoft.com/azure-cognitive-
services/keyphrase

would represent the Key Phrase Extraction image in the
Microsoft Container Registry under the Azure Cognitive
Services repository. Another example is,

containerpreview.azurecr.io/microsoft/cognitive-
services-speech-to-text

which would represent the Speech to Text image in the
Microsoft repository of the Container Preview container
registry.

Linux

Change size to the suggested recommendations for your
specific Cognitive Service container:

2 CPU cores

4GB

VALUE

https://ms.portal.azure.com/#create/Microsoft.ContainerInstances
https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-image-tags
https://docs.microsoft.com/en-us/azure/cognitive-services/containers/container-image-tags

SETTING VALUE

Ports Set the TCP port to seee . Exposes the container on
port 5000.

4. On the Advanced tab, enter the required Environment Variables for the container billing settings of
the Azure Container Instance resource:

KEY VALUE

Apikey Copied from the Keys and endpoint page of the
resource. It is a 32 alphanumeric-character string with no

Spaces or dashes, XXXXX XXX XX XXX XX XXX XXX XXX XXXXXXXX

Billing Your endpoint URL copied from the Keys and
endpoint page of the resource.

Eula accept

5. Click Review and Create
6. After validation passes, click Create to finish the creation process

7. When the resource is successfully deployed, it's ready

Use the Container Instance

e Azure portal
o CLI

1. Select the Overview and copy the IP address. It will be a numeric IP address such as 55.55.55.55 .

2. Open a new browser tab and use the IP address, for example,
http://<IP-address>:5000 (http://55.55.55.55:5000). You will see the container's home page, letting you
know the container is running.

< > C @ localhost:5000 QA

A Microsoft Azure

Your Azure Cognitive
Service Container is up
and running

3. Select Service API Description to view the swagger page for the container.

4. Select any of the POST APIs and select Try it out. The parameters are displayed including the input. Fill

in the parameters.
5. Select Execute to send the request to your Container Instance.

You have successfully created and used Cognitive Services containers in Azure Container Instance.

Deploy a Text Analytics container to Azure

Kubernetes Service

3/5/2021 « 12 minutes to read « Edit Online

Learn how to deploy the Azure Cognitive Services Text Analytics container image to Azure Kubernetes Service
(AKS). This procedure shows how to create a Text Analytics resource, how to create an associated sentiment
analysis image, and how to exercise this orchestration of the two from a browser. Using containers can shift your
attention away from managing infrastructure to instead focusing on application development.

Prerequisites

This procedure requires several tools that must be installed and run locally. Don't use Azure Cloud Shell. You
need the following:

® An Azure subscription. If you don't have an Azure subscription, create a free account before you begin.

A text editor, for example, Visual Studio Code.
The Azure CLI installed.
The Kubernetes CLI installed.

An Azure resource with the correct pricing tier. Not all pricing tiers work with this container:
o Azure Text Analytics resource with FO or standard pricing tiers only.

o Azure Cognitive Services resource with the SO pricing tier.

Create a Cognitive Services Text Analytics resource

1. Sign in to the Azure portal.

2. Select Create a resource, and then go to Al + Machine Learning > Text Analytics. Or, go to Create
Text Analytics.

3. Enter all the required settings:

SETTING VALUE

Name Enter a name (2-64 characters).
Subscription Select the appropriate subscription.
Location Select a nearby location.

Pricing tier Enter S, the standard pricing tier.
Resource group Select an available resource group.

4. Select Create, and wait for the resource to be created. Your browser automatically redirects to the newly
created resource page.

5. Collect the configured endpoint and an API key:

RESOURCE TAB IN PORTAL SETTING VALUE
Overview Endpoint Copy the endpoint. It appears
similar to
https://my-

resource.cognitiveservices.azure.com/text/analytic

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-use-kubernetes-service.md
https://azure.microsoft.com/free/cognitive-services
https://code.visualstudio.com/download
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://portal.azure.com
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics

RESOURCE TAB IN PORTAL SETTING VALUE

Keys API Key Copy one of the two keys. It's a 32-
character alphanumeric string with
no spaces or dashes: <

XXXXXXXXXXXXXXXXXXX XXX XX XXX XX XXX

>,

Create an Azure Kubernetes Service cluster resource

1. Go to Azure Kubernetes Service, and select Create.

2. On the Basics tab, enter the following information:

SETTING VALUE

Subscription Select an appropriate subscription.
Resource group Select an available resource group.
Kubernetes cluster name Enter a name (lowercase).

Region Select a nearby location.

Kubernetes version Whatever value is marked as (default).
DNS name prefix Created automatically, but you can override.
Node size Standard DS2 v2:

2 VvCPUs , 7 GB

Node count Leave the slider at the default value.

3. Onthe Node pools tab, leave Virtual nodes and VM scale sets set to their default values.
4. On the Authentication tab, leave Service principal and Enable RBAC set to their default values.

5. On the Networking tab, enter the following selections:

SETTING VALUE
HTTP application routing No
Networking configuration Basic

6. On the Integrations tab, make sure that Container monitoring is set to Enabled, and leave Log
Analytics workspace as the default value.

7. On the Tags tab, leave the name/value pairs blank for now.
8. Select Review and Create.

9. After validation passes, select Create.

NOTE

If validation fails, it might be because of a "Service principal" error. Go back to the Authentication tab and then go back
to Review + create, where validation should run and then pass.

e Key Phrase Extraction

e [anguage Detection

https://ms.portal.azure.com/#create/microsoft.aks

e Sentiment Analysis

Deploy the Key Phrase Extraction container to an AKS cluster

1. Open the Azure CLI, and sign in to Azure.

az login

2. Sign in to the AKS cluster. Replace your-cluster-name and your-resource-group Wwith the appropriate

values.

az aks get-credentials -n your-cluster-name -g -your-resource-group

After this command runs, it reports a message similar to the following:

Merged "your-cluster-name" as current context in /home/username/.kube/config

WARNING

If you have multiple subscriptions available to you on your Azure account and the az aks get-credentials
command returns with an error, a common problem is that you're using the wrong subscription. Set the context of

your Azure CLI session to use the same subscription that you created the resources with and try again.

az account set -s subscription-id

3. Open the text editor of choice. This example uses Visual Studio Code.

code .

4. Within the text editor, create a new file named keyphrase.yaml, and paste the following YAML into it. Be
sure to replace billing/value and apikey/value with your own information.

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: keyphrase
spec:
template:
metadata:

labels:
app: keyphrase-app

spec:

containers:

- name: keyphrase
image: mcr.microsoft.com/azure-cognitive-services/keyphrase
ports:

- containerPort: 5000
resources:
requests:
memory: 2Gi
cpu: 1
limits:
memory: 4Gi
cpu: 1
env:
- name: EULA
value: "accept"
name: billing
value: # {ENDPOINT_URI}
name: apikey
value: # {API_KEY}

apiVersion: vi1
kind: Service
metadata:
name: keyphrase
spec:
type: LoadBalancer
ports:
- port: 5000
selector:
app: keyphrase-app

. Save the file, and close the text editor.

. Run the Kubernetes apply command with the keyphrase,yaml/file as its target:

kubectl apply -f keyphrase.yaml

After the command successfully applies the deployment configuration, a message appears similar to the

following output:

deployment.apps "keyphrase" created
service "keyphrase" created

. Verify that the pod was deployed:

kubectl get pods

The output for the running status of the pod:

NAME READY STATUS RESTARTS AGE
keyphrase-5c9ccdf575-mfek5 1/1 Running © im

. Verify that the service is available, and get the IP address.

kubectl get services

The output for the running status of the keyphrase service in the pod:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 2m
keyphrase LoadBalancer 10.0.100.64 168.61.156.180 5000:31234/TCP 2m

Verify the Key Phrase Extraction container instance
1. Select the Overview tab, and copy the IP address.
2. Open a new browser tab, and enter the IP address. For example, enter

http://<IP-address>:5000 (http://55.55.55.55:5000). The container's home page is displayed, which lets
you know the container is running.

[YourAzure Cognitive Serviesist. X +

&« C @ Notsecure | sentiment-p: westus. i0:5000 % ;|

A Microsoft Azure

Your Azure Cognitive
Service Container is up
and running

Azure Cognitive Service Containers allow you to
ha the power of Al everywhere.

Service API Description @

Learn more @

3. Select the Service APl Description link to go to the container's Swagger page.

4. Choose any of the POST APIs, and select Try it out. The parameters are displayed, which includes this
example input:

{
"documents": [
{
"id": "1",
"text": "Hello world"
s
{
"id": 2",
"text": "Bonjour tout le monde"
s
{
"id": "3",
"text": "La carretera estaba atascada. Habia mucho trafico el dia de ayer."
s
{
"id": "4",
"text": ":) :(:D"
}
1
}

5. Replace the input with the following JSON content:

"documents": [
{
"language": "en",
"id": "7",
"text": "I was fortunate to attend the KubeCon Conference in Barcelona, it is one of the best
conferences I have ever attended. Great people, great sessions and I thoroughly enjoyed it!"

}

6. SetshowStats to true .
7. Select Execute to determine the sentiment of the text.

The model that's packaged in the container generates a score that ranges from 0 to 1, where 0 is negative
and 1 is positive.

The JSON response that's returned includes sentiment for the updated text input:

"documents": [
{

"id": 7",

"keyPhrases": [
"Great people",
"great sessions",
"KubeCon Conference",
"Barcelona",
"best conferences"

1,

"statistics": {
"charactersCount": 176,
"transactionsCount": 1

}

1,

"errors": [],

"statistics": {
"documentsCount": 1,
"validDocumentsCount": 1,
"erroneousDocumentsCount": @,
"transactionsCount": 1

We can now correlate the document id of the response payload's JSON data to the original request payload
document id . The resulting document has a keyPhrases array, which contains the list of key phrases that have
been extracted from the corresponding input document. Additionally, there are various statistics such as

charactercount and transactionCount for each resulting document.

Next steps

e Use more Cognitive Services containers

® Use the Text Analytics Connected Service

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-container-support
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/index.html#body

Configure Azure Cognitive Services virtual networks

6/15/2021 « 16 minutes to read « Edit Online

Azure Cognitive Services provides a layered security model. This model enables you to secure your Cognitive
Services accounts to a specific subset of networks. When network rules are configured, only applications
requesting data over the specified set of networks can access the account. You can limit access to your resources
with request filtering. Allowing only requests originating from specified IP addresses, IP ranges or from a list of
subnets in Azure Virtual Networks.

An application that accesses a Cognitive Services resource when network rules are in effect requires
authorization. Authorization is supported with Azure Active Directory (Azure AD) credentials or with a valid API
key.

IMPORTANT

Turning on firewall rules for your Cognitive Services account blocks incoming requests for data by default. In order to

allow requests through, one of the following conditions needs to be met:

e The request should originate from a service operating within an Azure Virtual Network (VNet) on the
allowed subnet list of the target Cognitive Services account. The endpoint in requests originated from
VNet needs to be set as the custom subdomain of your Cognitive Services account.

o Or the request should originate from an allowed list of IP addresses.

Requests that are blocked include those from other Azure services, from the Azure portal, from logging and
metrics services, and so on.

NOTE

This article has been updated to use the Azure Az PowerShell module. The Az PowerShell module is the recommended
PowerShell module for interacting with Azure. To get started with the Az PowerShell module, see Install Azure PowerShell.
To learn how to migrate to the Az PowerShell module, see Migrate Azure PowerShell from AzureRM to Az.

Scenarios

To secure your Cognitive Services resource, you should first configure a rule to deny access to traffic from all
networks (including internet traffic) by default. Then, you should configure rules that grant access to traffic from
specific VNets. This configuration enables you to build a secure network boundary for your applications. You can
also configure rules to grant access to traffic from select public internet IP address ranges, enabling connections
from specific internet or on-premises clients.

Network rules are enforced on all network protocols to Azure Cognitive Services, including REST and
WebSocket. To access data using tools such as the Azure test consoles, explicit network rules must be
configured. You can apply network rules to existing Cognitive Services resources, or when you create new
Cognitive Services resources. Once network rules are applied, they're enforced for all requests.

Supported regions and service offerings

Virtual networks (VNETs) are supported in regions where Cognitive Services are available. Currently multi-
service resource does not support VNET. Cognitive Services supports service tags for network rules

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/cognitive-services-virtual-networks.md
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/migrate-from-azurerm-to-az
https://azure.microsoft.com/global-infrastructure/services/

configuration. The services listed below are included in the CognitiveServicesManagement service tag.

e Anomaly Detector
e Computer Vision
e Content Moderator
e Custom Vision

e Face

e Form Recognizer
e Immersive Reader
e |anguage Understanding (LUIS)
e Personalizer

e Speech Services

e Text Analytics

e QnA Maker

e Translator Text

NOTE

If you're using LUIS or Speech Services, the CognitiveServicesManagement tag only enables you use the service using
the SDK or REST API. To access and use LUIS portal and/or Speech Studio from a virtual network, you will need to use the
following tags:

® AzureActiveDirectory
® AzureFrontDoor.Frontend
® AzureResourceManager

® CognitiveServicesManagement

Change the default network access rule

By default, Cognitive Services resources accept connections from clients on any network. To limit access to
selected networks, you must first change the default action.

WARNING

Making changes to network rules can impact your applications' ability to connect to Azure Cognitive Services. Setting the
default network rule to deny blocks all access to the data unless specific network rules that grant access are also applied.
Be sure to grant access to any allowed networks using network rules before you change the default rule to deny access. If
you are allow listing IP addresses for your on-premises network, be sure to add all possible outgoing public IP addresses

from your on-premises network.

Managing default network access rules

You can manage default network access rules for Cognitive Services resources through the Azure portal,
PowerShell, or the Azure CLI.

e Azure portal
o PowerShell
e Azure CLI

1. Go to the Cognitive Services resource you want to secure.

2. Select the RESOURCE MANAGEMENT menu called Virtual network.

oD widgets - Virtual network

Cognitive Services

|« Hsave ¥ Discard) Refresh

@ Overview

B Activity log

;.". Access control [IAM)

F Tags

Allow access from
(®) All networks () Selected networks

All networks, including the internet, can access this resource. Learn mare,

K Diagnose and solve problems

RESOURCE MAMNAGEMENT

“2 Virtual network

3. To deny access by default, choose to allow access from Selected networks. With the Selected

networks setting alone, unaccompanied by configured Virtual networks or Address ranges - all

access is effectively denied. When all access is denied, requests attempting to consume the Cognitive

Services resource aren't permitted. The Azure portal, Azure PowerShell or, Azure CLI can still be used to

configure the Cognitive Services resource.

4. To allow traffic from all networks, choose to allow access from All networks.

Home *» davidpine-computer-vision-vnet - Virtual network

&3 widgets - Virtual network

Cognitive Services

|<<

<« Overview
H Activity log
M Access contrel (IAM)
¢ Tags
XK Diagnose and solve problems
RESOURCE MANAGEMENT
% Virtual network

Keys
& Quick start
" Pricing tier
¢ Billing 8y Subscriptian
‘I!' properties
8 Locks

B4 Export template

Monitoring

Hosave X piscard Q) Refresh

0 Firewall settings allowing access to cognitive service will remain in effect for up to three minutes after saving updated settings restricting access.

Configure network security for your cognitive service. Learn more.

Virtual networks

Secure your cognitive service with virtual networks. + Add existing virtual network + Add new virtual netwark

VIRTUAL NETWORK SUBNET ADDRESS RANGE ENDPOINT

No network selected.

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
D Add your client IP address? @

ADDRESS RANGE

‘ IP address or CIDR

5. Select Save to apply your changes.

Grant access from a virtual network

You can configure Cognitive Services resources to allow access only from specific subnets. The allowed subnets
may belong to a VNet in the same subscription, or in a different subscription, including subscriptions belonging

to a different Azure Active Directory tenant.

Enable a service endpoint for Azure Cognitive Services within the VNet. The service endpoint routes traffic from

the VNet through an optimal path to the Azure Cognitive Services service. The identities of the subnet and the

virtual network are also transmitted with each request. Administrators can then configure network rules for the

Cognitive Services resource that allow requests to be received from specific subnets in a VNet. Clients granted

access via these network rules must continue to meet the authorization requirements of the Cognitive Services

resource to access the data.

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview

Each Cognitive Services resource supports up to 100 virtual network rules, which may be combined with IP

network rules.

Required permissions
To apply a virtual network rule to a Cognitive Services resource, the user must have the appropriate permissions
for the subnets being added. The required permission is the default Contributor role, or the Cognitive Services

Contributor role. Required permissions can also be added to custom role definitions.

Cognitive Services resource and the virtual networks granted access may be in different subscriptions, including

subscriptions that are a part of a different Azure AD tenant.

NOTE

Configuration of rules that grant access to subnets in virtual networks that are a part of a different Azure Active Directory
tenant are currently only supported through Powershell, CLI and REST APIs. Such rules cannot be configured through the
Azure portal, though they may be viewed in the portal.

Managing virtual network rules

You can manage virtual network rules for Cognitive Services resources through the Azure portal, PowerShell, or
the Azure CLI.

e Azure portal

e PowerShell

e Azure CLI

1. Go to the Cognitive Services resource you want to secure.

2. Select the RESOURCE MANAGEMENT menu called Virtual network.

3. Check that you've selected to allow access from Selected networks.

4. To grant access to a virtual network with an existing network rule, under Virtual networks, select Add
existing virtual network.

& widgets - Virtual network

Cognitive Services

» Hsave ¥ Discard) Refresh

0 Firewall settings allowing access to cognitive service will remain in effect for up to three minutes after saving updated settings restricting access.
Allow access from
() &ll networks (@) Selected networks
Configure network security for your cognitive service. Learn mare.

Virtual networks

Secure your cognitive service with virtual networks. | + Add existing virtual network | + Add new virtual network

VIRTUAL NETWORK SUBNET ADDRESS RANGE

Mo network selected.

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
|:| Add your client IP address? @

ADDRESS RANGE

| IP address or CIDR

5. Select the Virtual networks and Subnets options, and then select Enable.

Add networks *

* Subscription

| widgets-subscription ~ |

* Virtual networks

| widgets-vnet ~ |
* Subnets
| default (Service endpaoint required) ~ |

o The following networks don't have service endpoints enabled
for 'Microsoft.CognitiveServices'. Enabling access will take up
to 13 minutes to complete. After starting this operation, it is
safe to leave and return later if you do not wish to wait.

VIRTUAL NETWORK SERVICE ENDPOINT STATUS
w widgets-vnet...

default Mot enabled

6. To create a new virtual network and grant it access, select Add new virtual network.
4. widgets - Virtual network
Cognitive Services

» Hsave ¥ Discard Q) Refresh

0 Firewall settings allowing access to cognitive service will remain in effect for up to three minutes after saving updated settings restricting access.

Allow access from
) All networks (@) Selected networks

Configure network security for your cognitive service. Learn more.

Virtual networks

Secure your cognitive service with virtual networks. + Add existing virtual network | + Add new virtual network

VIRTUAL NETWORK SUBNET ADDRESS RANGE

Mo network selectad.

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
|:| Add your client IP address? @

ADDRESS RANGE

| IP address or CIDR

7. Provide the information necessary to create the new virtual network, and then select Create.

Create virtual network >

* Mame

widgets-vnet v’
| |

* Address space @
| 10100116 |
10.1.0.0 - 10.1.255.255 (65536 addresses)

* Subscription

| widgets-subscription ~ |

* Resource group

| widgets-resource-group ~ |

Create new

* Location
[(US) West US 2 v |

Subnet
* Mame
| default |

* Address range @
| 10.1.00724 v|
10.1.0.0 - 10.1.0.255 (256 addresses)

DDaoS protection @

{E:i' Basic {::Z' standard
Service endpoint @
Microsoft.CognitiveServices

Firewsll @
(=D crabled)

J

NOTE

If a service endpoint for Azure Cognitive Services wasn't previously configured for the selected virtual network and
subnets, you can configure it as part of this operation.

Presently, only virtual networks belonging to the same Azure Active Directory tenant are shown for selection
during rule creation. To grant access to a subnet in a virtual network belonging to another tenant, please use
Powershell, CLI or REST APIs.

8. To remove a virtual network or subnet rule, select ... to open the context menu for the virtual network or
subnet, and select Remove.

G- Wwidgets - Virtual network p

Cognitive Services

» Hsave X Discard Q) Refresh

o Firewall settings allowing access to cognitive service will remain in effect for up to three minutes after saving updated settings restricting access.
Allow access from
() All networks (@) Selected networks
Configure network security for your cognitive service, Learn mare.

Virtual networks

Secure your cognitive service with virtual networks. + Add existing virtual network + Add new virtual network
VIRTUAL NETWORK SUBNET ADDRESS RANGE ENDPOINT STATUS RESOURCE GROUP SUBSCRIPTION
 widgets-vnet 1 widgets-resource-gr... widgets-subscriptio
default 10.1.0.0/24 v Enabled widgets- .00]
Firewall

Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
I:‘ Add your client IP address

ADDRESS RANGE

IP address or CIDR

9. Select Save to apply your changes.

IMPORTANT

Be sure to set the default rule to deny, or network rules have no effect.

Grant access from an internet IP range

You can configure Cognitive Services resources to allow access from specific public internet IP address ranges.
This configuration grants access to specific services and on-premises networks, effectively blocking general

internet traffic.

Provide allowed internet address ranges using CIDR notation in the form 16.17.18.e/24 or as individual IP

addresses like 16.17.18.19 .

TIP

Small address ranges using "/31" or "/32" prefix sizes are not supported. These ranges should be configured using

individual IP address rules.

IP network rules are only allowed for public internet IP addresses. IP address ranges reserved for private
networks (as defined in RFC 1918) aren't allowed in IP rules. Private networks include addresses that start with

10.% , 172.16.*% - 172.31.* ,and 192.168.* .

Only IPV4 addresses are supported at this time. Each Cognitive Services resource supports up to 100 IP network
rules, which may be combined with Virtual network rules.

Configuring access from on-premises networks

To grant access from your on-premises networks to your Cognitive Services resource with an IP network rule,
you must identify the internet facing IP addresses used by your network. Contact your network administrator
for help.

If you're using ExpressRoute on-premises for public peering or Microsoft peering, you'll need to identify the NAT

https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc1918#section-3
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction

IP addresses. For public peering, each ExpressRoute circuit by default uses two NAT IP addresses. Each is applied
to Azure service traffic when the traffic enters the Microsoft Azure network backbone. For Microsoft peering, the
NAT IP addresses that are used are either customer provided or are provided by the service provider. To allow
access to your service resources, you must allow these public IP addresses in the resource IP firewall setting. To
find your public peering ExpressRoute circuit IP addresses, open a support ticket with ExpressRoute via the
Azure portal. Learn more about NAT for ExpressRoute public and Microsoft peering.

Managing IP network rules

You can manage IP network rules for Cognitive Services resources through the Azure portal, PowerShell, or the
Azure CLI.

e Azure portal
e PowerShell

e Azure CLI

1. Go to the Cognitive Services resource you want to secure.
2. Select the RESOURCE MANAGEMENT menu called Virtual network.
3. Check that you've selected to allow access from Selected networks.

4. To grant access to an internet IP range, enter the IP address or address range (in CIDR format) under
Firewall > Address Range. Only valid public IP (non-reserved) addresses are accepted.

&.» widgets - Virtual network

Cognitive Services

» Hsave ¥ piscard) Refresh

0 Firewall settings allowing access to cognitive service will remain in effect for up to three minutes after saving updated settings restricting access.
Allow access from
() All networks (@) Selected networks
Configure network security for your cognitive service. Learn mare.

Virtual networks

Secure your cognitive service with virtual networks. + Add existing virtual network + Add new virtual network

VIRTUAL NETWORK SUBNET ADDRESS RANGE

Mo network selectad.

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
|:| Add your client IP address? @

ADDRESS RANGE

[172000116 v]

=]

| IP address or CIDR |

5. To remove an IP network rule, select the trash can icon next to the address range.

https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/overview
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-nat
https://tools.ietf.org/html/rfc4632

4. widgets - Virtual network

Cognitive Services

» Hsave ¥ piscard) Refresh

0 Firewall settings allowing access to cognitive service will remain in effect for up to three minutes after saving updated settings restricting access.
Allow access from
() All networks (@) Selected networks
Configure network security for your cognitive service. Learn mare.

Virtual networks

Secure your cognitive service with virtual networks. + Add existing virtual network + Add new virtual network

VIRTUAL NETWORK SUBNET ADDRESS RANGE

Mo network selectad.

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.
|:| Add your client IP address? @

ADDRESS RANGE

=]

[172000116 4l
|

| IP address or CIDR

6. Select Save to apply your changes.

IMPORTANT

Be sure to set the default rule to deny, or network rules have no effect.

Use private endpoints

You can use private endpoints for your Cognitive Services resources to allow clients on a virtual network (VNet)
to securely access data over a Private Link. The private endpoint uses an IP address from the VNet address space
for your Cognitive Services resource. Network traffic between the clients on the VNet and the resource traverses
the VNet and a private link on the Microsoft backbone network, eliminating exposure from the public internet.

Private endpoints for Cognitive Services resources let you:

e Secure your Cognitive Services resource by configuring the firewall to block all connections on the public
endpoint for the Cognitive Services service.

e Increase security for the VNet, by enabling you to block exfiltration of data from the VNet.

e Securely connect to Cognitive Services resources from on-premises networks that connect to the VNet using
VPN or ExpressRoutes with private-peering.

Conceptual overview

A private endpoint is a special network interface for an Azure resource in your VNet. Creating a private endpoint
for your Cognitive Services resource provides secure connectivity between clients in your VNet and your
resource. The private endpoint is assigned an IP address from the IP address range of your VNet. The connection
between the private endpoint and the Cognitive Services service uses a secure private link.

Applications in the VNet can connect to the service over the private endpoint seamlessly, using the same
connection strings and authorization mechanisms that they would use otherwise. The exception is the Speech
Services, which require a separate endpoint. See the section on Private endpoints with the Speech Services.
Private endpoints can be used with all protocols supported by the Cognitive Services resource, including REST.

Private endpoints can be created in subnets that use Service Endpoints. Clients in a subnet can connect to one

https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://docs.microsoft.com/en-us/azure/private-link/private-link-overview
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-locations
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview

Cognitive Services resource using private endpoint, while using service endpoints to access others.

When you create a private endpoint for a Cognitive Services resource in your VNet, a consent request is sent for
approval to the Cognitive Services resource owner. If the user requesting the creation of the private endpoint is
also an owner of the resource, this consent request is automatically approved.

Cognitive Services resource owners can manage consent requests and the private endpoints, through the
'Private endpoints' tab for the Cognitive Services resource in the Azure portal.

Private endpoints

When creating the private endpoint, you must specify the Cognitive Services resource it connects to. For more
information on creating a private endpoint, see:

e Create a private endpoint using the Private Link Center in the Azure portal
e Create a private endpoint using Azure CLI

e Create a private endpoint using Azure PowerShell

Connecting to private endpoints

Clients on a VNet using the private endpoint should use the same connection string for the Cognitive Services
resource as clients connecting to the public endpoint. The exception is the Speech Services, which require a
separate endpoint. See the section on Private endpoints with the Speech Services. We rely upon DNS resolution
to automatically route the connections from the VNet to the Cognitive Services resource over a private link.

We create a private DNS zone attached to the VNet with the necessary updates for the private endpoints, by
default. However, if you're using your own DNS server, you may need to make additional changes to your DNS
configuration. The section on DNS changes below describes the updates required for private endpoints.

Private endpoints with the Speech Services

See Using Speech Services with private endpoints provided by Azure Private Link.

DNS changes for private endpoints

When you create a private endpoint, the DNS CNAME resource record for the Cognitive Services resource is
updated to an alias in a subdomain with the prefix ' privatelink'. By default, we also create a private DNS zone,
corresponding to the 'privatelink subdomain, with the DNS A resource records for the private endpoints.

When you resolve the endpoint URL from outside the VNet with the private endpoint, it resolves to the public
endpoint of the Cognitive Services resource. When resolved from the VNet hosting the private endpoint, the
endpoint URL resolves to the private endpoint's IP address.

This approach enables access to the Cognitive Services resource using the same connection string for clients in
the VNet hosting the private endpoints and clients outside the VNet.

If you are using a custom DNS server on your network, clients must be able to resolve the fully qualified domain
name (FQDN) for the Cognitive Services resource endpoint to the private endpoint IP address. Configure your
DNS server to delegate your private link subdomain to the private DNS zone for the VNet.

TIP

When using a custom or on-premises DNS server, you should configure your DNS server to resolve the Cognitive
Services resource name in the 'privatelink' subdomain to the private endpoint IP address. You can do this by delegating
the 'privatelink’ subdomain to the private DNS zone of the VNet, or configuring the DNS zone on your DNS server and
adding the DNS A records.

For more information on configuring your own DNS server to support private endpoints, refer to the following
articles:

https://portal.azure.com
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-portal
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-cli
https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-powershell
https://docs.microsoft.com/en-us/azure/dns/private-dns-overview
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-services-private-link
https://docs.microsoft.com/en-us/azure/dns/private-dns-overview

o Name resolution for resources in Azure virtual networks

e DNS configuration for private endpoints

Pricing

For pricing details, see Azure Private Link pricing.

Next steps

e Explore the various Azure Cognitive Services

e | earn more about Azure Virtual Network Service Endpoints

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-name-resolution-for-vms-and-role-instances
https://docs.microsoft.com/en-us/azure/private-link/private-endpoint-overview
https://azure.microsoft.com/pricing/details/private-link
https://docs.microsoft.com/en-us/azure/cognitive-services/what-are-cognitive-services
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview

Authenticate requests to Azure Cognitive Services

7/22/2021 » 8 minutes to read « Edit Online

Each request to an Azure Cognitive Service must include an authentication header. This header passes along a
subscription key or access token, which is used to validate your subscription for a service or group of services.
In this article, you'll learn about three ways to authenticate a request and the requirements for each.

e Authenticate with a single-service or multi-service subscription key
o Authenticate with a token

e Authenticate with Azure Active Directory (AAD)

Prerequisites

Before you make a request, you need an Azure account and an Azure Cognitive Services subscription. If you
already have an account, go ahead and skip to the next section. If you don't have an account, we have a guide to
get you set up in minutes: Create a Cognitive Services account for Azure.

You can get your subscription key from the Azure portal after creating your account.

Authentication headers

Let's quickly review the authentication headers available for use with Azure Cognitive Services.
HEADER DESCRIPTION

Ocp-Apim-Subscription-Key Use this header to authenticate with a subscription key for a
specific service or a multi-service subscription key.

Ocp-Apim-Subscription-Region This header is only required when using a multi-service
subscription key with the Translator service. Use this header
to specify the subscription region.

Authorization Use this header if you are using an authentication token. The
steps to perform a token exchange are detailed in the
following sections. The value provided follows this format:

Bearer <TOKEN> .

Authenticate with a single-service subscription key

The first option is to authenticate a request with a subscription key for a specific service, like Translator. The keys
are available in the Azure portal for each resource that you've created. To use a subscription key to authenticate
a request, it must be passed along as the ocp-Apim-Subscription-key header.

These sample requests demonstrates how to use the ocp-Apim-Subscription-key header. Keep in mind, when
using this sample you'll need to include a valid subscription key.

This is a sample call to the Bing Web Search API:

curl -X GET 'https://api.cognitive.microsoft.com/bing/v7.0/search?q=Welsch%20Pembroke%20Corgis’ \
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' | json_pp

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/authentication.md
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://azure.microsoft.com/free/cognitive-services/
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference

This is a sample call to the Translator service:

curl -X POST 'https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=en&to=de" \
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' \

-H 'Content-Type: application/json' \

--data-raw '[{ "text": "How much for the cup of coffee?" }]' | json_pp

The following video demonstrates using a Cognitive Services key.

Authenticate with a multi-service subscription key

WARNING

At this time, the multi-service key doesn't support: QnA Maker, Immersive Reader, Personalizer, and Anomaly Detector.

This option also uses a subscription key to authenticate requests. The main difference is that a subscription key
is not tied to a specific service, rather, a single key can be used to authenticate requests for multiple Cognitive
Services. See Cognitive Services pricing for information about regional availability, supported features, and

pricing.

The subscription key is provided in each request as the ocp-Apim-Subscription-Key header.

Supported regions

When using the multi-service subscription key to make a request to api.cognitive.microsoft.com , you must

include the region in the URL. For example: westus.api.cognitive.microsoft.com .

When using multi-service subscription key with the Translator service, you must specify the subscription region
with the ocp-Apim-Subscription-Region header.

Multi-service authentication is supported in these regions:

® australiaeast
® brazilsouth

® canadacentral
® centralindia

® eastasia

https://azure.microsoft.com/pricing/details/cognitive-services/
https://www.youtube.com/watch?v=psHtA1p7Cas&feature=youtu.be

® eastus

® japaneast

® northeurope

® southcentralus
® southeastasia
® uksouth

® westcentralus
® westeurope

® westus

® westus2

® francecentral
® koreacentral
® northcentralus
® southafricanorth
® uaenorth

® switzerlandnorth

Sample requests

This is a sample call to the Bing Web Search API:

curl -X GET 'https://YOUR-REGION.api.cognitive.microsoft.com/bing/v7.0/search?qg=Welsch%20Pembroke%20Corgis"’
\
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' | json_pp

This is a sample call to the Translator service:

curl -X POST 'https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=en&to=de" \
-H 'Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY' \

-H "Ocp-Apim-Subscription-Region: YOUR_SUBSCRIPTION_REGION' \

-H 'Content-Type: application/json' \

--data-raw '[{ "text": "How much for the cup of coffee?" }]' | json_pp

Authenticate with an authentication token

Some Azure Cognitive Services accept, and in some cases require, an authentication token. Currently, these
services support authentication tokens:

e Text Translation API
e Speech Services: Speech-to-text REST API
e Speech Services: Text-to-speech REST API

NOTE

QnA Maker also uses the Authorization header, but requires an endpoint key. For more information, see QnA Maker: Get

answer from knowledge base.

https://docs.microsoft.com/en-us/azure/cognitive-services/qnamaker/quickstarts/get-answer-from-knowledge-base-using-url-tool

WARNING

The services that support authentication tokens may change over time, please check the API reference for a service

before using this authentication method.

Both single service and multi-service subscription keys can be exchanged for authentication tokens.
Authentication tokens are valid for 10 minutes.

Authentication tokens are included in a request as the Authorization header. The token value provided must be

preceded by Bearer , for example: Bearer YOUR_AUTH_TOKEN .

Sample requests

Use this URL to exchange a subscription key for an authentication token:
https://YOUR-REGION.api.cognitive.microsoft.com/sts/v1.0/issueToken .

curl -v -X POST \
"https://YOUR-REGION.api.cognitive.microsoft.com/sts/v1.0/issueToken" \
-H "Content-type: application/x-www-form-urlencoded" \

-H "Content-length: 0" \

-H "Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY"

These multi-service regions support token exchange:

® australiaeast
® brazilsouth

® canadacentral
® centralindia
® eastasia

® eastus

® japaneast

® northeurope
® southcentralus
® southeastasia
® uksouth

® westcentralus
® westeurope

® westus

® westus2

After you get an authentication token, you'll need to pass it in each request as the Authorization header. This is

a sample call to the Translator service:

curl -X POST 'https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=en&to=de' \
-H 'Authorization: Bearer YOUR_AUTH_TOKEN' \

-H 'Content-Type: application/json' \

--data-raw '[{ "text": "How much for the cup of coffee?" }]' | json_pp

Authenticate with Azure Active Directory

IMPORTANT

AAD authentication always needs to be used together with custom subdomain name of your Azure resource. Regional
endpoints do not support AAD authentication.

In the previous sections, we showed you how to authenticate against Azure Cognitive Services using a single-
service or multi-service subscription key. While these keys provide a quick and easy path to start development,
they fall shortin more complex scenarios that require Azure role-based access control (Azure RBAC). Let's take a

look at what's required to authenticate using Azure Active Directory (AAD).

In the following sections, you'll use either the Azure Cloud Shell environment or the Azure CLI to create a
subdomain, assign roles, and obtain a bearer token to call the Azure Cognitive Services. If you get stuck, links
are provided in each section with all available options for each command in Azure Cloud Shell/Azure CLI.

Create a resource with a custom subdomain

The first step is to create a custom subdomain. If you want to use an existing Cognitive Services resource which
does not have custom subdomain name, follow the instructions in Cognitive Services Custom Subdomains to
enable custom subdomain for your resource.

1. Start by opening the Azure Cloud Shell. Then select a subscription:

Set-AzContext -SubscriptionName <SubscriptionName>

2. Next, create a Cognitive Services resource with a custom subdomain. The subdomain name needs to be

wonpe

globally unique and cannot include special characters, such as: ".", "I", ",

$account = New-AzCognitiveServicesAccount -ResourceGroupName <RESOURCE_GROUP_NAME> -name
<ACCOUNT_NAME> -Type <ACCOUNT_TYPE> -SkuName <SUBSCRIPTION_TYPE> -Location <REGION> -
CustomSubdomainName <UNIQUE_SUBDOMAIN>

3. If successful, the Endpoint should show the subdomain name unique to your resource.

Assign a role to a service principal

Now that you have a custom subdomain associated with your resource, you're going to need to assign a role to

a service principal.

NOTE

Keep in mind that Azure role assignments may take up to five minutes to propagate.

1. First, let's register an AAD application.

$SecureStringPassword = ConvertTo-SecureString -String <YOUR_PASSWORD> -AsPlainText -Force

$app = New-AzADApplication -DisplayName <APP_DISPLAY_NAME> -IdentifierUris <APP_URIS> -Password
$SecureStringPassword

You're going to need the Applicationld in the next step.

2. Next, you need to create a service principal for the AAD application.

New-AzADServicePrincipal -ApplicationId <APPLICATION_ID>

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains
https://docs.microsoft.com/en-us/powershell/module/az.accounts/set-azcontext
https://docs.microsoft.com/en-us/powershell/module/az.cognitiveservices/new-azcognitiveservicesaccount
https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azadapplication
https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azadserviceprincipal

NOTE

If you register an application in the Azure portal, this step is completed for you.

3. The last step is to assign the "Cognitive Services User" role to the service principal (scoped to the
resource). By assigning a role, you're granting service principal access to this resource. You can grant the

same service principal access to multiple resources in your subscription.

NOTE
The Objectld of the service principal is used, not the Objectld for the application. The ACCOUNT_ID will be the
Azure resource Id of the Cognitive Services account you created. You can find Azure resource Id from "properties"

of the resource in Azure portal.

New-AzRoleAssignment -ObjectId <SERVICE_PRINCIPAL_OBJECTID> -Scope <ACCOUNT_ID> -RoleDefinitionName
"Cognitive Services User"

Sample request

In this sample, a password is used to authenticate the service principal. The token provided is then used to call
the Computer Vision API.

1. Getyour Tenantld:

$context=Get-AzContext
$context.Tenant.Id

2. Get a token:

NOTE

If you're using Azure Cloud Shell, the secureclientsecret class isn't available.

o PowerShell

e Azure Cloud Shell

$authContext = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext"” -
ArgumentList "https://login.windows.net/<TENANT_ID>"

$secureSecretObject = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.SecureClientSecret”
-ArgumentList $SecureStringPassword

$clientCredential = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.ClientCredential” -
ArgumentList $app.ApplicationId, $secureSecretObject
$token=$authContext.AcquireTokenAsync("https://cognitiveservices.azure.com/",
$clientCredential).Result

$token

3. Call the Computer Vision API:

$url = $account.Endpoint+"vision/v1.0/models"

$result = Invoke-RestMethod -Uri $url -Method Get -Headers
@{"Authorization"=$token.CreateAuthorizationHeader()} -Verbose
$result | ConvertTo-Json

https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azroleassignment

Alternatively, the service principal can be authenticated with a certificate. Besides service principal, user principal
is also supported by having permissions delegated through another AAD application. In this case, instead of

passwords or certificates, users would be prompted for two-factor authentication when acquiring token.

Authorize access to managed identities

Cognitive Services support Azure Active Directory (Azure AD) authentication with managed identities for Azure
resources. Managed identities for Azure resources can authorize access to Cognitive Services resources using
Azure AD credentials from applications running in Azure virtual machines (VMs), function apps, virtual machine
scale sets, and other services. By using managed identities for Azure resources together with Azure AD
authentication, you can avoid storing credentials with your applications that run in the cloud.

Enable managed identities ona VM

Before you can use managed identities for Azure resources to authorize access to Cognitive Services resources
from your VM, you must enable managed identities for Azure resources on the VM. To learn how to enable
managed identities for Azure Resources, see:

e Azure portal

e Azure PowerShell

e Azure CLI

e Azure Resource Manager template

e Azure Resource Manager client libraries

For more information about managed identities, see Managed identities for Azure resources.

See also
e Whatis Cognitive Services?
e Cognitive Services pricing

o Custom subdomains

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-portal-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-powershell-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-cli-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-template-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/qs-configure-sdk-windows-vm
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/what-are-cognitive-services
https://azure.microsoft.com/pricing/details/cognitive-services/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-custom-subdomains

Migrate to version 3.x of the Text Analytics API

7/8/2021 « 4 minutes to read ¢ Edit Online

If you're using version 2.1 of the Text Analytics AP, this article will help you upgrade your application to use
version 3.x. Version 3.1 and 3.0 are generally available and introduce new features such as expanded Named
Entity Recognition (NER) and model versioning. Version of v3.1 is also available, which adds features such as
opinion mining and Personally Identifying Information detection. The models used in v2 or 3.1-preview.x will not
receive future updates.

e Sentiment analysis
e NER and entity linking
e |anguage detection

e Key phrase extraction

TIP

Want to use the latest version of the API in your application? See the sentiment analysis how-to article and quickstart for
information on the current version of the API.

Feature changes

Sentiment Analysis in version 2.1 returns sentiment scores between 0 and 1 for each document sent to the API,
with scores closer to 1 indicating more positive sentiment. Version 3 instead returns sentiment labels (such as
"positive” or "negative") for both the sentences and the document as a whole, and their associated confidence
scores.

Steps to migrate
REST API

If your application uses the REST API, update its request endpoint to the v3 endpoint for sentiment analysis. For
example: https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.1/sentiment . You will

also need to update the application to use the sentiment labels returned in the API's response.
See the reference documentation for examples of the JSON response.

e Version 2.1
e \ersion 3.0

e Version 3.1

Client libraries

To use the latest version of the Text Analytics v3 client library, you will need to download the latest software
package in the Azure.AI.TextAnalytics namespace. The Setting up section in the quickstart article lists the
commands you can use for your preferred language, with example code.

See also

e What is the Text Analytics API
e language support

e Model versioning

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/migration-guide.md
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1/operations/56f30ceeeda5650db055a3c9
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0/operations/Sentiment
https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1/operations/Sentiment

Example user scenarios for the Text Analytics API

3/5/2021 « 2 minutes to read » Edit Online

The Text Analytics APl is a cloud-based service that provides advanced natural language processing over text.
This article describes some example use cases for integrating the API into your business solutions and
processes.

Analyze Survey results

Draw insights from customer and employee survey results by processing the raw text responses using
Sentiment Analysis. Aggregate the findings for analysis, follow up, and driving engagements.

Analyze recorded inbound customer calls

Extract insights from customer services calls using Speech-to-Text, Sentiment Analysis, and Key Phrase
Extraction. Display the results in Power Bl dashboard or a portal to better understand customers, highlight
customer service trends, and drive customer engagement. Send API requests as a batch for reporting, or in real-
time for intervention. See the sample code on GitHub.

Process and categorize support incidents

Use Key Phrase Extraction and Entity Recognition to process support requests submitted in unstructured textual
format. Use the extracted phrases and entities to categorize the requests for resource planning and trend
analysis.

Monitor your product's social media feeds

Monitor user product feedback on your product's twitter or Facebook page. Use the data to analyze customer
sentiment toward new products launches, extract key phrases about features and feature requests, or address
customer complaints as they happen. See the example Microsoft Power Automate template.

Classify and redact documents that have sensitive information

Use Named Entity Recognition to identify personal and sensitive information in documents. Use the data to
classify documents or redact them so they can be shared safely.

Azure Storage Azure Cognitive T
. Sarvi Text — Document classification
or file system TS N8 (as sensitive)

Document text

Analytics
— —

Entity

Recognition: — Document redaction

Personal Info

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/text-analytics-user-scenarios.md
https://github.com/rlagh2/callcenteranalytics
https://flow.microsoft.com/galleries/public/templates/2680d2227d074c4d901e36c66e68f6f9/run-sentiment-analysis-on-tweets-and-push-results-to-a-power-bi-dataset/

Perform opinion mining
Group opinions related to specific aspects of a product or service in surveys, customer feedback, or wherever
text holds an opinion about an aspect. Use it to help guide product launches and improvements, marketing

efforts, or highlight how your product or service is performing.
Sentiment

Opinions

Aspects

hotel
room
staff

location

night

place -
restaurant -
breakfast -
tood [
day -
beach -
service -
stay -
resort -
time -

ved [l

pool -
bathroom -
trip .

bar .

view .

o

u
people .
price [l available
review .
experience .
street . =°=
city .
walk .

Next steps

e What is the Text Analytics API?
e Send a request to the Text Analytics APl using the client library

Supported entity categories in the Text Analytics API

v3

7/8/2021 « 33 minutes to read » Edit Online

Use this article to find the entity categories that can be returned by Named Entity Recognition (NER). NER runs a
predictive model to identify and categorize named entities from an input document.

NER v3.1 is also available, which includes the ability to detect personal (P11) and health (pPHI) information.
Additionally, click on the Health tab to see a list of supported categories in Text Analytics for health.

You can find a list of types returned by version 2.1 in the migration guide

Entity categories

o General
e Pl
o Health

The NER feature for Text Analytics returns the following general (non identifying) entity categories. for example
when sending requests to the /entities/recognition/general endpoint.

CATEGORY DESCRIPTION

Person Names of people.

PersonType Job types or roles held by a person.

Location Natural and human-made landmarks, structures,

geographical features, and geopolitical entities

Organization Companies, political groups, musical bands, sport clubs,
government bodies, and public organizations.

Event Historical, social, and naturally occurring events.
Product Physical objects of various categories.

Skill A capability, skill, or expertise.

Address Full mailing addresses.

Phone number Phone numbers.

Email Email addresses.

URL URLs to websites.

IP Network IP addresses.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/named-entity-types.md

CATEGORY DESCRIPTION
DateTime Dates and times of day.

Quantity Numerical measurements and units.

Category: Person

This category contains the following entity:
Entity

Person

Details

Names of people.

Supported document languages

ar , ¢s, da, nl, en, fi, fr, de, he,

hu, it, ja, ko, no, pl, pt-br, pt-pt, ru, es, sv, tr

Category: PersonType

This category contains the following entity:
Entity
PersonType
Details
Job types or roles held by a person
Supported document languages
en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Category: Location

This category contains the following entity:

Entity

Location

Details

Natural and human-made landmarks, structures, geographical features, and geopolitical entities.
Supported document languages

ar, ¢cs, da, nl, en, fi, fr, de, he, hu, it, ja, ko, no, pl, pt-br, pt-pt, ru, es, sv, tr

Subcategories

The entity in this category can have the following subcategories.
Entity subcategory

Geopolitical Entity (GPE)

Details

Cities, countries/regions, states.

Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br
Structural

Manmade structures.

en

Geographical

Geographic and natural features such as rivers, oceans, and deserts.
en

Category: Organization

This category contains the following entity:
Entity

Organization

Details

Companies, political groups, musical bands, sport clubs, government bodies, and public organizations.
Nationalities and religions are not included in this entity type.

Supported document languages

ar, ¢s, da, nl, en, fi, fr, de, he, hu, it, ja, ko, no, pl, pt-br, pt-pt, ru, es, sv, tr

Subcategories

The entity in this category can have the following subcategories.
Entity subcategory

Medical

Details

Medical companies and groups.
Supported document languages
en

Stock exchange

Stock exchange groups.

en

Sports

Sports-related organizations.

en

Category: Event

This category contains the following entity:
Entity

Event

Details

Historical, social, and naturally occurring events.

Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt and pt-br

Subcategories

The entity in this category can have the following subcategories.
Entity subcategory

Cultural

Details

Cultural events and holidays.
Supported document languages
en

Natural

Naturally occurring events.

en

Sports

Sporting events.

en

Category: Product

This category contains the following entity:
Entity
Product
Details
Physical objects of various categories.
Supported document languages
en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Subcategories

The entity in this category can have the following subcategories.
Entity subcategory

Computing products

Details

Computing products.

Supported document languages

en

Category: Skill

This category contains the following entity:
Entity
Skill
Details
A capability, skill, or expertise.
Supported document languages
en , es, fr, de, it , pt-pt, pt-br

Category: Address

This category contains the following entity:

Entity

Address

Details

Full mailing address.

Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Category: PhoneNumber

This category contains the following entity:

Entity

PhoneNumber

Details

Phone numbers (US and EU phone numbers only).
Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt pt-br

Category: Email

This category contains the following entity:

Entity

Email

Details

Email addresses.

Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Category: URL

This category contains the following entity:

Entity

URL

Details

URLs to websites.

Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Category: IP

This category contains the following entity:

Entity

IP

Details

network IP addresses.

Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Category: DateTime

This category contains the following entities:
Entity
DateTime
Details
Dates and times of day.
Supported document languages
en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Entities in this category can have the following subcategories

Subcategories

The entity in this category can have the following subcategories.
Entity subcategory

Date

Details

Calender dates.

Supported document languages

en, es, fr, de, it , zh-hans , pt-pt, pt-br

Time

Times of day.

en, es, fr, de, it , zh-hans , pt-pt, pt-br

DateRange

Date ranges.

en, es, fr, de, it , zh-hans , pt-pt, pt-br
TimeRange

Time ranges.

en, es, fr, de, it , zh-hans , pt-pt, pt-br
Duration

Durations.

en, es, fr, de, it , zh-hans , pt-pt, pt-br
Set

Set, repeated times.

en, es, fr, de, it , zh-hans, pt-pt, pt-br

Category: Quantity

This category contains the following entities:
Entity

Quantity

Details

Numbers and numeric quantities.
Supported document languages

en, es, fr, de, it , zh-hans, ja, ko, pt-pt, pt-br

Subcategories

The entity in this category can have the following subcategories.
Entity subcategory

Number

Details

Numbers.

Supported document languages

en, es, fr, de, it , zh-hans , pt-pt, pt-br
Percentage

Percentages

en, es, fr, de, it , zh-hans , pt-pt, pt-br
Ordinal numbers

Ordinal numbers.

en, es, fr, de, it , zh-hans , pt-pt, pt-br

Age

Ages.

en, es, fr, de, it , zh-hans
Currency

Currencies

en, es, fr, de, it , zh-hans
Dimensions

Dimensions and measurements.

en, es, fr, de, it , zh-hans
Temperature

Temperatures.

en, es, fr, de, it , zh-hans

Next steps

’

'

r

r

pt-pt

pt-pt

pt-pt

pt-pt

'

r

e How to use Named Entity Recognition

pt-br

pt-br

pt-br

pt-br

in Text Analytics

Text offsets in the Text Analytics APl output

8/2/2021 « 2 minutes to read » Edit Online

Multilingual and emoji support has led to Unicode encodings that use more than one code point to represent a
single displayed character, called a grapheme. For example, emojis like & and & may use several characters to
compose the shape with additional characters for visual attributes, such as skin tone. Similarly, the Hindi word
EEEEEEEE s cncoded as five letters and three combining marks.

Because of the different lengths of possible multilingual and emoji encodings, the Text Analytics APl may return
offsets in the response.

Offsets in the API response

Whenever offsets are returned in the API response, such as Named Entity Recognition or Sentiment Analysis,
remember:

e Elements in the response may be specific to the endpoint that was called.

e HTTP POST/GET payloads are encoded in UTF-8, which may or may not be the default character encoding on
your client-side compiler or operating system.

e Offsets refer to grapheme counts based on the Unicode 8.0.0 standard, not character counts.

Extracting substrings from text with offsets

Offsets can cause problems when using character-based substring methods, for example the .NET substring()
method. One problem is that an offset may cause a substring method to end in the middle of a multi-character
grapheme encoding instead of the end.

In .NET, consider using the Stringlnfo class, which enables you to work with a string as a series of textual
elements, rather than individual character objects. You can also look for grapheme splitter libraries in your
preferred software environment.

The Text Analytics API returns these textual elements as well, for convenience.

Offsets in API version 3.1

In version 3.1 of the AP, all Text Analytics APl endpoints that return an offset will support the stringIndexType
parameter. This parameter adjusts the offset and length attributes in the APl output to match the requested
string iteration scheme. Currently, we support three types:

1. textelement_v8 (default): iterates over graphemes as defined by the Unicode 8.0.0 standard
2. unicodeCodePoint :iterates over Unicode Code Points, the default scheme for Python 3

3. utfieCodeUnit :iterates over UTF-16 Code Units, the default scheme for JavaScript, Java, and .NET

If the stringIndexType requested matches the programming environment of choice, substring extraction can be
done using standard substring or slice methods.

See also

e Text Analytics overview
e Sentiment analysis

e Entity recognition

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/concepts/text-offsets.md
https://wikipedia.org/wiki/Code_point
https://www.w3schools.com/charsets/ref_html_utf8.asp
https://unicode.org/versions/Unicode8.0.0
https://docs.microsoft.com/en-us/dotnet/api/system.string.substring
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo
https://unicode.org/versions/Unicode8.0.0
http://www.unicode.org/versions/Unicode13.0.0/ch02.pdf#G25564
https://unicode.org/faq/utf_bom.html#UTF16

e Detect language

® |anguage recognition

Data and rate limits for the Text Analytics API

3/5/2021 « 2 minutes to read » Edit Online

Use this article to find the limits for the size, and rates that you can send data to Text Analytics API. Note that

pricing is not affected by the data limits or rate limits. Pricing is subject to your Text Analytics resource's pricing
details.

Data limits

NOTE

® |f you need to analyze larger documents than the limit allows, you can break the text into smaller chunks of text before
sending them to the API.

® A document is a single string of text characters.

LIMIT VALUE

Maximum size of a single document 5,120 characters as measured by
StringInfo.LengthinTextElements. Also applies to Text
Analytics for health.

Maximum size of a single document (/analyze endpoint) 125K characters as measured by
Stringlnfo.LengthinTextElements. Does not apply to Text
Analytics for health.

Maximum size of entire request 1 MB. Also applies to Text Analytics for health.
If a document exceeds the character limit, the APl will behave differently depending on the endpoint you're
using:

® /analyze endpoint:

o The APl will reject the entire request and return a 4ee bad request error if any document within it
exceeds the maximum size.

e All other endpoints:

o The APl won't process a document that exceeds the maximum size, and will return an invalid
document error for it. If an API request has multiple documents, the API will continue processing them
if they are within the character limit.

The maximum number of documents you can send in a single request will depend on the API version and
feature you're using, which is described in the table below.

e Version 3

e \ersion 2
The following limits are for the current v3 API. Exceeding the limits below will generate an HTTP 400 error code.
FEATURE MAX DOCUMENTS PER REQUEST

Language Detection 1000

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/concepts/data-limits.md
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.lengthintextelements
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo.lengthintextelements

FEATURE MAX DOCUMENTS PER REQUEST

Sentiment Analysis 10
Opinion Mining 10
Key Phrase Extraction 10
Named Entity Recognition 5
Entity Linking 5
Text Analytics for health 10 for the web-based API, 1000 for the container.
Analyze endpoint 25 for all operations.
Rate limits

Your rate limit will vary with your pricing tier. These limits are the same for both versions of the API. These rate
limits don't apply to the Text Analytics for health container, which does not have a set rate limit.

TIER REQUESTS PER SECOND REQUESTS PER MINUTE
S / Multi-service 1000 1000

SO /FO 100 300

S1 200 300

S2 300 300

S3 500 500

s4 1000 1000

Requests rates are measured for each Text Analytics feature separately. You can send the maximum number of
requests for your pricing tier to each feature, at the same time. For example, if you're in the s tier and send
1000 requests at once, you wouldn't be able to send another request for 59 seconds.

See also

e What is the Text Analytics API

e Pricing details

https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/

Model versioning in the Text Analytics AP

6/22/2021 + 2 minutes to read « Edit Online

Version 3 of the Text Analytics APl lets you choose the model version that gets used on your data. Use the
optional model-version parameter to select the version of the model in your APl requests. For example:
<resource-url>/text/analytics/v3.8/sentiment?model-version=2020-04-01 . If this parameter isn't specified the API

will default to the latest stable version.

Available versions

Use the table below to find which model versions are supported by each hosted endpoint.

ENDPOINT SUPPORTED VERSIONS LATEST VERSION
/sentiment 2019-10-01 , 2020-04-01 2020-04-01
/languages 2019-10-01 , 2020-07-01 , 2021-01-05

2020-09-01 , 2021-01-05

/entities/linking 2019-10-01 , 2020-02-01 2020-02-01
/entities/recognition/general 2019-10-01 , 2020-02-01 , 2021-06-01
2020-04-01 , 2021-01-15 ,
2021-06-01
/entities/recognition/pii 2019-10-01 , 2020-02-01 , 2021-01-15
2020-04-01 , 2020-07-01 ,
2021-01-15
/entities/health 2021-05-15 2021-05-15
/keyphrases 2019-10-01 , 2020-07-01 , 2021-06-01
2021-06-01

You can find details about the updates for these models in What's new.

Text Analytics for health

The Text Analytics for Health container uses separate model versioning than the above API endpoints. Please
note that only one model version is available per container image.

ENDPOINT CONTAINER IMAGE TAG MODEL VERSION

/entities/health 3.0.016230002-onprem-amd64 OrF 2021-05-15
latest

/entities/health 3.0.015370001-onprem-amd64 2021-03-01

/entities/health 1.1.013530001-amd64-preview 2020-09-03

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/concepts/model-versioning.md

ENDPOINT

/entities/health
/domains/health
/domains/health

/domains/health

Next steps

e Text Analytics overview
e Sentiment analysis

e Entity recognition

CONTAINER IMAGE TAG

1.1.013150001-amd64-preview

1.1.012640001-amd64-preview

1.1.012420001-amd64-preview

1.1.012070001-amd64-preview

MODEL VERSION

2020-07-24

2020-05-08

2020-05-08

2020-04-16

Tutorial: Integrate Power Bl with the Text Analytics

Cognitive Service

7/8/2021 12 minutes to read » Edit Online

Microsoft Power Bl Desktop is a free application that lets you connect to, transform, and visualize your data. The
Text Analytics service, part of Microsoft Azure Cognitive Services, provides natural language processing. Given
raw unstructured text, it can extract the most important phrases, analyze sentiment, and identify well-known
entities such as brands. Together, these tools can help you quickly see what your customers are talking about

and how they feel about it.
In this tutorial, you'll learn how to:

e Use Power Bl Desktop to import and transform data

e Create a custom function in Power Bl Desktop

e Integrate Power Bl Desktop with the Text Analytics Key Phrases API

e Use the Text Analytics Key Phrases API to extract the most important phrases from customer feedback

o C(Create a word cloud from customer feedback

Prerequisites

e Microsoft Power Bl Desktop. Download at no charge.
e A Microsoft Azure account. Create a free account or sign in.

e A Cognitive Services APl account with the Text Analytics API. If you don't have one, you can sign up and use
the free tier for 5,000 transactions/month (see pricing details to complete this tutorial.

e The Text Analytics access key that was generated for you during sign-up.

e Customer comments. You can use our example data or your own data. This tutorial assumes you're using our

example data.

Load customer data

To get started, open Power Bl Desktop and load the comma-separated value (CSV) file FabrikamComments.csv
that you downloaded in Prerequisites. This file represents a day's worth of hypothetical activity in a fictional

small company's support forum.

NOTE

Power Bl can use data from a wide variety of web-based sources, such as SQL databases. See the Power Query

documentation for more information.

In the main Power Bl Desktop window, select the Home ribbon. In the External data group of the ribbon, open
the Get Data drop-down menu and select Text/CSV.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/tutorials/tutorial-power-bi-key-phrases.md
https://powerbi.microsoft.com/get-started/
https://azure.microsoft.com/free/cognitive-services/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://azure.microsoft.com/pricing/details/cognitive-services/text-analytics/
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://aka.ms/cogsvc/ta
https://docs.microsoft.com/en-us/power-query/connectors/

Home View Modeling
Cut D ol
Q) ird]

Copy
Paste . Get Recent Enter Edit Refresh
Format Painter | pata E?Sources' Data Queries~
Clipboard External data
Get Data

Create queries by importing data
from a new source,

The Open dialog appears. Navigate to your Downloads folder, or to the folder where you downloaded the
FabrikamComments.csv file. Click FabrikamComments.csv , then the Open button. The CSV import dialog appears.

[4
FabrikamComments.csv
File Origin Delimiter Data Type Detection
1252: Western Eurcpean (Windows) ~ | | Comma = | | Based on first 200 rows - [E
id inreplyto name userid emailaddress datetime topic subject
~N

1102 0 Donald Erie derie doni@example.com 9:04:00 AM | shipping Insufficient packaging

1103 0 Jake Bering jakeb jake. bering@example.com 23700 AM | fulfillment Wrong items again

1104 0 | Ann Huron annh ahuron@example.com 10:11:00 AM | praise Fantastic!

1105 1103 | David Columbia davidc davidc78@example.com 10:15:00 AM | fulfillment Re: Wrong items again

1106 0 Maria Michigan mariam | maria@example.com 10:44:00 AM | other Photo on framistan brochure

1107 0 | Juan Brazos juanm juanl@example.com 11:01:00 AM | techsupport | Bag of Holding

1108 1105 | Jake Bering jakeb jake bering@example.com | 12:23:00 PM | fulfillment Re: Wrong items again

1109 0 | Susan Colorado SUsanC suecol@example.com 1:15:00 PM | techsupport | Problems with retro-encabulator W

>
L{: Edit Cancel

The CSV import dialog lets you verify that Power Bl Desktop has correctly detected the character set, delimiter,
header rows, and column types. This information is all correct, so click Load.

To see the loaded data, click the Data View button on the left edge of the Power Bl workspace. A table opens
that contains the data, like in Microsoft Excel.

al | H - — O X
File Home Modeling (7]
Cut |:B. D D E‘ﬂ D ‘ i Text box L&l New Measure I E
) ~]
E‘@ Copy — —/J L Image |J Mew Column
Paste . Get Recent Enter Edit Refresh Solution Partner Mew Mew From From Manage Publish
Format Fainter pata= Sources= Data Queries+ Templates Showcase Page ~ Visual Shapes Store File Relationships
Clipboard External data Resources Insert Custom visuals Relationships Calculations Share

Donald Erie derie don@ example.com 9:04:00 AM shipping nsufficient packaging
Jake Bering jakeb jakeberine@example.com 9:37:00 AM fulfiliment Wrong items again

Ann Huron annh shuron@ example.com 10:11:00 AM praise Fantastic!

4 B FabrikamComments

David Columbia davidc davidc 7B @exam ple.com 10:15:00 AM fulfillment Re: Wrong items again
comment

datetime

Maria Michigan maiam mar a@ example.com 10:44:00 AM cother Photo on framistan brochure

Juan Brazos juanm juanl@example.com 11:01:00 AM techsupport Bag of Holding

Jake Bering jakeb jakeberine@example.com 12:23:00 PM fulfillment Re: Wrong items again emailaddress
Susan Colorado sUSaNc suecol@ example.com 1:15:00 PM techsupport Problems with retro-encabulator

Ron Puget ronp ronnyp@example.com 1:57:00 PM fulfillment Re: Wrong items again

Elena Pecos elenab pecos@ example.com 2:14:00 PM other Re: P hoto on framistan brochure
Darius Willamette dariusw go-dawgs@example.com 3:03:00 PM techsupport Re: Bag of Holding

Fabrkam Support fsupport support@fabrikam com 3:16:00 PM techsupport Re: Problems with retro-encabulator
Roy Ontario royo roy_it@example.com 3:29:00 PM techsupport Re: Problems with retro-encabulator
lake Bering jakeb jake berine@examplecom 3:33:00 PM fulfillment Re: Wrong items again

Susan Colorado SUSaNC suecol@ example.com 3:57:00 PM techsupport Re: Problems with retro-encabulator
Fabr kam Sales faales sales@fabrikam.com 4:04:00 PM fulfillment Re: Wrong tems again

Wen Niagara wenn wen@e@mple.com 4:19:00 PM productinfo When are the new models coming out?
Susan Colorado SUSaNc suecol@ example.com 4:47:00 PM techsupport Re: Problems with retro-encabulator

Jake Bering jakeb jake.bering@eample.com 5:12:00 PM fulfiliment Re: Wrong tems again

TABLE: Fabrikam Comments (20 rows)

Prepare the data

You may need to transform your data in Power Bl Desktop before it's ready to be processed by the Key Phrases

API of the Text Analytics service.

The sample data contains a subject columnanda comment column. With the Merge Columns function in

Power Bl Desktop, you can extract key phrases from the data in both these columns, rather than just the

comment column.

In Power Bl Desktop, select the Home ribbon. In the External data group, click Edit Queries.

Home Modeling

Get Recent

Data ™ Sources ™

Cut

Bl copy

Paste .
Format Painter

Clipboard

Help

& B

E'/j.

Edit
Queries =

Enter
Data

External data

Select Fabrikamcomments in the Queries list at the left side of the window if it isn't already selected.

Now select both the subject and comment columns in the table. You may need to scroll horizontally to see

these columns. First click the subject column header, then hold down the Control key and click the comment

column header.

1| = @- - | Untitled - Query Editor

Home Transform Add Column

(3 d B [3

New Recent Enter Datasource
Source ¥ Sources~ Data settings

View

Manage
Parameters

=X

L L
Close &
Apply ~
Close

(3

Refresh

Preview - I Mana
New Query Parameters

Data Sources Query

Queries [1]

EEPropemes
5T Advanced Editor

= Table.TransformColumnTypes(#"Promoted Headers",{{"id", Inté4.Type}, {"inreplyto”,

o/ o
HH HH

Keep Remaove
Rows~ Rows~

% Data Type: Text =
m Use First Row as Headers =

Group 1
By ' ReplaceValues

BH %
Choose Remove
Columns ~ Columns ~

Split
Calumn

Sort

g8 T

Manage Columns Reduce Rows Transform

Query Settings

- 123 spamscore

| @ FabrikamComments

Insufficient packaging

Wrong items again

Fantasticl

Re: Wrong items again

Phata en framistan brochure

Bag of Holding

Re: Wrong items again

Problems with retro-encabulator

Re: Wrong items again

Re: Phato on framistan brochure

Re: Bag of Holding

Re: Problems with retro-encabulator
Re: Problems with retro-encabulator
Re: Wrong items again

Re: Problems with retra-encabulator
Re: Wrong items again

When are the new models coming out?
Re: Problems with retro-encabulator
Re: Wrong items again

Gizma colars

11 COLUMNS,

| ordered three widgets last week and just received them. | am VERY di... 4 PROPERTIES

Can't believe you fools shipped me the wrong items AGAIN. If you wer.__ Liane
‘Wow! | had NO IDEA that reciprocating garombles of such high quality ...
Jake, I've had similar problems tracking down another source of thinga...
That hand model needs a manicure, stat!

| put my wedding ring in a Bag of Holding | purchased from you guys (f...
David, sorry, it's whatchamacallits I'm looking for. | should have been
Hi folks. According to your encabulator brochure, the hydrocoptic mar...
Jake, it's probably none of my business, but you will probably get a bet...
Maria, I'm pretty sure the folks at Fabrikam use photos of actual custo...
Juan, are you sure it's not a Bag of Transmuting? They look very simila...
Susan, the hydrocoptic marzlevanes MUST be fitted properly to the a__
Have you tried turning it off and back on again? The encabulator runs ..
Ren, you're quite right: it is none of your business! The terms l used ar_..
Roy, thanks for the suggestion. It did help a little, but did not entirely e...
lake, I'm very sorry that you've had this problem for s long. Our syste...
I'am in need of some doohickeys in the near future. If | remember corr_
Thanks. One of the marzelvanes was installed backward, so it's my faul ..
That's all well and good for ME, and | do appreciate it, but what about __

Hi, have you ever considered making gizmos in colors other than chart...

PREVIEW DOWNLOADED AT 811 AM

5 Merge Queries ~
EAppend Queries =
Combine Files

Combine

Select the Transform ribbon. In the Text Columns group of the ribbon, click Merge Columns. The Merge

Columns dialog appears.

Merge Columns

Choose how to merge the selected columns.

Separator
Tab -

MNew calumn name {optional)
Merged

once

In the Merge Columns dialog, choose Tab as the separator, then click OK.

You might also consider filtering out blank messages using the Remove Empty filter, or removing unprintable
characters using the Clean transformation. If your data contains a column like the spamscore column in the

sample file, you can skip "spam" comments using a Number Filter.

Understand the API

The Key Phrases API of the Text Analytics service can process up to a thousand text documents per HTTP request.
Power BI prefers to deal with records one at a time, so in this tutorial your calls to the APl will include only a
single document each. The Key Phrases API requires the following fields for each document being processed.

FIELD DESCRIPTION

id A unique identifier for this document within the request. The
response also contains this field. That way, if you process
more than one document, you can easily associate the
extracted key phrases with the document they came from. In
this tutorial, because you're processing only one document
per request, you can hard-code the value of id to be the
same for each request.

text The text to be processed. The value of this field comes from
the Merged column you created in the previous section,
which contains the combined subject line and comment text.
The Key Phrases API requires this data be no longer than
about 5,120 characters.

language The code for the natural language the document is written
in. All the messages in the sample data are in English, so you
can hard-code the value en for this field.

Create a custom function

Now you're ready to create the custom function that will integrate Power Bl and Text Analytics. The function
receives the text to be processed as a parameter. It converts data to and from the required JSON format and
makes the HTTP request to the Key Phrases API. The function then parses the response from the APl and returns
a string that contains a comma-separated list of the extracted key phrases.

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-V3-1/operations/KeyPhrases

NOTE

Power Bl Desktop custom functions are written in the Power Query M formula language, or just "M" for short. M is a
functional programming language based on F#. You don't need to be a programmer to finish this tutorial, though; the
required code is included below.

In Power Bl Desktop, make sure you're still in the Query Editor window. If you aren't, select the Home ribbon,

and in the External data group, click Edit Queries.

Now, in the Home ribbon, in the New Query group, open the New Source drop-down menu and select Blank

Query.

A new query, initially named query1 , appears in the Queries list. Double-click this entry and name it

KeyPhrases .

Now, in the Home ribbon, in the Query group, click Advanced Editor to open the Advanced Editor window.
Delete the code that's already in that window and paste in the following code.

NOTE

Replace the example endpoint below (containing <your-custom-subdomain>) with the endpoint generated for your Text
Analytics resource. You can find this endpoint by signing in to the Azure portal, selecting your Text Analytics subscription,
and selecting Quick start .

// Returns key phrases from the text in a comma-separated list
(text) => let

apikey = "YOUR_API_KEY_HERE",

endpoint = "https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics" &
"/v3.0/keyPhrases”,

jsontext = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),

jsonbody = "{ documents: [{ language: ""en"", id: ""@"", text: " & jsontext & " }] }",

bytesbody = Text.ToBinary(jsonbody),

headers = [#"Ocp-Apim-Subscription-Key" = apikey],

bytesresp = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),

jsonresp = Json.Document(bytesresp),

keyphrases = Text.Lower(Text.Combine(jsonresp[documents]{0}[keyPhrases], ", "))
in keyphrases

Replace YOUR_API_KEY_HERE with your Text Analytics access key. You can also find this key by signing in to the
Azure portal, selecting your Text Analytics subscription, and selecting the Overview page. Be sure to leave the

quotation marks before and after the key. Then click Done.

Use the custom function

Now you can use the custom function to extract the key phrases from each of the customer comments and store

them in a new column in the table.

In Power BI Desktop, in the Query Editor window, switch back to the Fabrikamcomments query. Select the Add
Column ribbon. In the General group, click Invoke Custom Function.

https://docs.microsoft.com/en-us/powerquery-m/power-query-m-reference
https://docs.microsoft.com/en-us/dotnet/fsharp/
https://azure.microsoft.com/features/azure-portal/
https://azure.microsoft.com/features/azure-portal/

Home Transform Add Column View
E E Frz Conditional Column .,
% EI .A)ﬁ‘:.

E Index Column ~
Column From Custom Invoke Custom . Format
Examples* Column Function [Duplicate Column <

General

. Invoke Custom Function i
Queries [2] le. Comb:
Invoke a custom function defined

in this file for each row of this

P FabrikamCommeERELIES

1103

1104

The Invoke Custom Function dialog appears. In New column name, enter keyphrases . In Function query,
select the custom function you created, KeyPhrases .

A new field appears in the dialog, text (optional). This field is asking which column we want to use to provide
values for the text parameter of the Key Phrases API. (Remember that you already hard-coded the values for
the language and id parameters.) Select Merged (the column you created previously by merging the subject
and message fields) from the drop-down menu.

Invoke Custom Function

Invoke a custom function defined in this file for each row.
MNew column name
keyphrases

Function gquery
KeyPhrases -

text (optional)
D * || Merged e

IE_I Cancel

Finally, click OK.

If everything is ready, Power Bl calls your custom function once for each row in the table. It sends the queries to
the Key Phrases APl and adds a new column to the table to store the results. But before that happens, you may
need to specify authentication and privacy settings.

Authentication and privacy

After you close the Invoke Custom Function dialog, a banner may appear asking you to specify how to connect
to the Key Phrases API.

I Please specify how to connect. Edit Credentials

Click Edit Credentials, make sure Anonymous is selected in the dialog, then click Connect.

NOTE

You select Anonymous because the Text Analytics service authenticates you using your access key, so Power Bl does not
need to provide credentials for the HTTP request itself

Anonymous & https://your-custom-subdomain.cognitiveservices.a...

Windows ! We couldn't authenticate with the credentials provided. Please try again.

Use anonymous access for this Web content.
Basic

Select which level to apply these settings to

Web API hittps://your-custom-subdemain.cognitiveservices.azure.com/ e

Organizational account

Connect Cancel

If you see the Edit Credentials banner even after choosing anonymous access, you may have forgotten to paste
your Text Analytics access key into the code in the keyPhrases custom function.

Next, a banner may appear asking you to provide information about your data sources' privacy.

1 Information is required about data privacy. Continue

Click Continue and choose Ppublic for each of the data sources in the dialog. Then click Save.

X
Privacy levels

The privacy level is used to ensure data is combined without undesirable data transfer. Incorrect
privacy levels may lead to sensitive data being leaked outside of a trusted scope. More information
on privacy levels can be found here.

O |en - Public -
&5 | hitpsy// <your-custom-subdomain>.cegnitiveservices.azure.com - Public e

Create the word cloud

Once you have dealt with any banners that appear, click Close & Apply in the Home ribbon to close the Query
Editor.

Power Bl Desktop takes a moment to make the necessary HTTP requests. For each row in the table, the new
keyphrases column contains the key phrases detected in the text by the Key Phrases API.

Now you'll use this column to generate a word cloud. To get started, click the Report button in the main Power
Bl Desktop window, to the left of the workspace.

NOTE

Why use extracted key phrases to generate a word cloud, rather than the full text of every comment? The key phrases
provide us with the important words from our customer comments, not just the most common words. Also, word sizing
in the resulting cloud isn't skewed by the frequent use of a word in a relatively small number of comments.

If you don't already have the Word Cloud custom visual installed, install it. In the Visualizations panel to the right
of the workspace, click the three dots (...) and choose Import From Market. If the word "cloud" is not among
the displayed visualization tools in the list, you can search for "cloud" and click the Add button next the Word
Cloud visual. Power Bl installs the Word Cloud visual and lets you know that it installed successfully.

Custom Visuals

Add-ins may access personal and document information. By using an add-in, you agree to its Permissions, License Terms and Privacy Policy.
cloud jo. Suggested for you ~
Catego
gory Word Cloud

Add

Create a fun visual from frequent text in your data

T ek ok ko

All

Editor's Picks
Filters

KPls

Maps

Advanced Analytics
Time

Gauges
Infographics

Data Visualizations

First, click the Word Cloud icon in the Visualizations panel.

Visualizations

1]
-
9
(=
|

A new report appears in the workspace. Drag the keyphrases field from the Fields panel to the Category field in

the Visualizations panel. The word cloud appears inside the report.

Now switch to the Format page of the Visualizations panel. In the Stop Words category, turn on Default Stop
Words to eliminate short, common words like "of" from the cloud. However, because we're visualizing key

phrases, they might not contain stop words.

' General

" Data colors

- Stop Words

Default ...

Words

Down a little further in this panel, turn off Rotate Text and Title.

— A = w
@‘—— FocusMode tool

items

problems
2 O'Wrong

Click the Focus Mode tool in the report to get a better look at our word cloud. The tool expands the word cloud

to fill the entire workspace, as shown below.

ordering R
: . packaging patiens extra thingamabob
inventory claimsflag little ak
T asking act hydr{)cc}ptlc|m|3|o”emﬂn : widgets o
status defective MArzlevanes foul months
insufficient
EW addition 1hf0|l<ﬁ fabrlkeﬁm
s transitfact ring whatchamacallits juanservice fault
safekeeping computers price Way
place heck :EU‘ITT:E . steal
oghouse screw
doohickey case SyStemS explanation
: ot 99 right garombles wow
I—. \Nork_:lﬁ:phmos nes delivery Emﬁwead . bag
Wro n ideg Maria difference
actual overnight kind tjme vip
. customers e
shipping : ti f.
high up Vears marzelvanes operation unit
whatchamacallit future 9" week y ; ;yc;';,l._\ ng
wedding spendy long
brochures thirds X : ;
Ite I I I S rEf ult odels couple quality dochickeys
peanuts roduct drltr |eecl e transmuting
rgcﬁg&hf look accour Tie)Ia free _ tisifed frustration
mmpmyum ¥ satisif
J11a:p,

More Text Analytics services

The Text Analytics service, one of the Cognitive Services offered by Microsoft Azure, also provides sentiment
analysis and language detection. The language detection in particular is useful if your customer feedback isn't all

in English.

Both of these other APIs are similar to the Key Phrases API. That means you can integrate them with Power B
Desktop using custom functions that are nearly identical to the one you created in this tutorial. Just create a
blank query and paste the appropriate code below into the Advanced Editor, as you did earlier. (Don't forget your
access key!) Then, as before, use the function to add a new column to the table.

The Sentiment Analysis function below returns a label indicating how positive the sentiment expressed in the

text is.

// Returns the sentiment label of the text, for example, positive, negative or mixed.
(text) => let
apikey = "YOUR_API_KEY_HERE",
endpoint = "<your-custom-subdomain>.cognitiveservices.azure.com" & "/text/analytics/v3.1/sentiment”,
jsontext = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),
jsonbody = "{ documents: [{ language: ""en"", id: ""e"", text: " & jsontext & " }] }",
bytesbody = Text.ToBinary(jsonbody),
headers = [#"Ocp-Apim-Subscription-Key" = apikey],
bytesresp = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),
jsonresp = Json.Document(bytesresp),
sentiment = jsonresp[documents]{@}[sentiment]
in sentiment

Here are two versions of a Language Detection function. The first returns the ISO language code (for example,
en for English), while the second returns the "friendly" name (for example, English). You may notice that only

the last line of the body differs between the two versions.

// Returns the two-letter language code (for example, 'en' for English) of the text
(text) => let

apikey = "YOUR_API_KEY_HERE",

endpoint = "https://<your-custom-subdomain>.cognitiveservices.azure.com" &
"/text/analytics/v3.1/languages”,

jsontext = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),

jsonbody = "{ documents: [{ id: ""@"", text: " & jsontext & " }] }",

bytesbody = Text.ToBinary(jsonbody),

headers = [#"Ocp-Apim-Subscription-Key" = apikey],

bytesresp = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),

jsonresp = Json.Document(bytesresp),

language = jsonresp [documents]{@}[detectedLanguage] [iso6391Name] in language

// Returns the name (for example, 'English') of the language in which the text is written
(text) => let

apikey = "YOUR_API_KEY_HERE",

endpoint = "https://<your-custom-subdomain>.cognitiveservices.azure.com" &
"/text/analytics/v3.1/languages”,

jsontext = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),

jsonbody = "{ documents: [{ id: ""@"", text: " & jsontext & " }] }",

bytesbody = Text.ToBinary(jsonbody),

headers = [#"Ocp-Apim-Subscription-Key" = apikey],

bytesresp = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),

jsonresp = Json.Document(bytesresp),

language jsonresp [documents]{@}[detectedLanguage] [iso6391Name] in language

Finally, here's a variant of the Key Phrases function already presented that returns the phrases as a list object,
rather than as a single string of comma-separated phrases.

NOTE

Returning a single string simplified our word cloud example. A list, on the other hand, is a more flexible format for working
with the returned phrases in Power BIl. You can manipulate list objects in Power Bl Desktop using the Structured Column
group in the Query Editor's Transform ribbon.

// Returns key phrases from the text as a list object
(text) => let

apikey = "YOUR_API_KEY_HERE",

endpoint = "https://<your-custom-subdomain>.cognitiveservices.azure.com" &
"/text/analytics/v3.1/keyPhrases”,

jsontext = Text.FromBinary(Json.FromValue(Text.Start(Text.Trim(text), 5000))),

jsonbody = "{ documents: [{ language: ""en"", id: ""@"", text: " & jsontext & " }] }",

bytesbody = Text.ToBinary(jsonbody),

headers = [#"Ocp-Apim-Subscription-Key" = apikey],

bytesresp = Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),

jsonresp = Json.Document(bytesresp),

keyphrases = jsonresp[documents]{@}[keyPhrases]
in keyphrases

Next steps

Learn more about the Text Analytics service, the Power Query M formula language, or Power BI.

Text Analytics API reference
Power Query M reference

Power Bl documentation

https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-1
https://docs.microsoft.com/en-us/powerquery-m/power-query-m-reference
https://powerbi.microsoft.com/documentation/powerbi-landing-page/

Tutorial: Build a Flask app with Azure Cognitive

Services

3/24/2021 « 24 minutes to read « Edit Online

In this tutorial, you'll build a Flask web app that uses Azure Cognitive Services to translate text, analyze
sentiment, and synthesize translated text into speech. Our focus is on the Python code and Flask routes that
enable our application, however, we will help you out with the HTML and JavaScript that pulls the app together. If
you run into any issues let us know using the feedback button below.

Here's what this tutorial covers:

e Get Azure subscription keys

e Set up your development environment and install dependencies

e (Create a Flask app

e Use the Translator to translate text

e Use Text Analytics to analyze positive/negative sentiment of input text and translations
e Use Speech Services to convert translated text into synthesized speech

e Run your Flask app locally

TIP

If you'd like to skip ahead and see all the code at once, the entire sample, along with build instructions are available on
GitHub.

What is Flask?

Flask is a microframework for creating web applications. This means Flask provides you with tools, libraries, and
technologies that allow you to build a web application. This web application can be some web pages, a blog, a
wiki or go as substantive as a web-based calendar application or a commercial website.

For those of you who want to deep dive after this tutorial here are a few helpful links:

o Flask documentation

e Flask for Dummies - A Beginner's Guide to Flask

Prerequisites
Let's review the software and subscription keys that you'll need for this tutorial.

e Python 3.6 or later

e Git tools

e An IDE or text editor, such as Visual Studio Code or Atom

e Chrome or Firefox

e ATranslator subscription key (you can likely use the global location.)
e AText Analytics subscription key in the West US region.

e ASpeech Services subscription key in the West US region.

Create an account and subscribe to resources

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/Translator/tutorial-build-flask-app-translation-synthesis.md
https://github.com/MicrosoftTranslator/Text-Translation-API-V3-Flask-App-Tutorial
http://flask.pocoo.org/
https://codeburst.io/flask-for-dummies-a-beginners-guide-to-flask-part-uno-53aec6afc5b1
https://www.python.org/downloads/
https://git-scm.com/downloads
https://code.visualstudio.com/
https://atom.io/
https://www.google.com/chrome/browser/
https://www.mozilla.org/firefox

As previously mentioned, you're going to need three subscription keys for this tutorial. This means that you
need to create a resource within your Azure account for:

e Translator
o Text Analytics

e Speech Services

Use Create a Cognitive Services Account in the Azure portal for step-by-step instructions to create resources.

IMPORTANT

For this tutorial, please create your resources in the West US region. If using a different region, you'll need to adjust the
base URL in each of your Python files.

Set up your dev environment

Before you build your Flask web app, you'll need to create a working directory for your project and install a few
Python packages.

Create a working directory

1. Open command line (Windows) or terminal (macOS/Linux). Then, create a working directory and sub
directories for your project:

mkdir -p flask-cog-services/static/scripts && mkdir flask-cog-services/templates
2. Change to your project's working directory:

cd flask-cog-services

Create and activate your virtual environment with virtualenv

Let's create a virtual environment for our Flask app using virtualenv . Using a virtual environment ensures that
you have a clean environment to work from.

1. In your working directory, run this command to create a virtual environment: macOS/Linux:

virtualenv venv --python=python3

We've explicitly declared that the virtual environment should use Python 3. This ensures that users with
multiple Python installations are using the correct version.

Windows CMD / Windows Bash:

virtualenv venv

To keep things simple, we're naming your virtual environment venv.

2. The commands to activate your virtual environment will vary depending on your platform/shell:

PLATFORM SHELL COMMAND

macOS/Linux bash/zsh

source venv/bin/activate

https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account

PLATFORM SHELL COMMAND

Windows bash source venv/Scripts/activate
Command Line venv\Scripts\activate.bat
PowerShell venv\Scripts\Activate.psl

After running this command, your command line or terminal session should be prefaced with venv .

3. You can deactivate the session at any time by typing this into the command line or terminal: deactivate .

NOTE

Python has extensive documentation for creating and managing virtual environments, see virtualenv.

Install requests

Requests is a popular module that is used to send HTTP 1.1 requests. There's no need to manually add query
strings to your URLs, or to form-encode your POST data.

1. Toinstall requests, run:

pip install requests

NOTE

If you'd like to learn more about requests, see Requests: HTTP for Humans.

Install and configure Flask

Next we need to install Flask. Flask handles the routing for our web app, and allows us to make server-to-server

calls that hide our subscription keys from the end user.

1. Toinstall Flask, run:

pip install Flask

Let's make sure Flask was installed. Run:

flask --version

The version should be printed to terminal. Anything else means something went wrong.

2. To run the Flask app, you can either use the flask command or Python's -m switch with Flask. Before you
can do that you need to tell your terminal which app to work with by exporting the FLASK_aAPP

environment variable:

macOS/Linux:

export FLASK_APP=app.py

Windows:

https://virtualenv.pypa.io/en/latest/
https://2.python-requests.org/en/master/

set FLASK_APP=app.py

Create your Flask app

In this section, you're going to create a barebones Flask app that returns an HTML file when users hit the root of
your app. Don't spend too much time trying to pick apart the code, we'll come back to update this file later.

What is a Flask route?
Let's take a minute to talk about "routes". Routing is used to bind a URL to a specific function. Flask uses route
decorators to register functions to specific URLs. For example, when a user navigates to the root (/) of our web

app, index.html is rendered.

@app.route('/")
def index():
return render_template('index.html")

Let's take a look at one more example to hammer this home.

@app.route('/about")
def about():
return render_template('about.html")

This code ensures that when a user navigates to http://your-web-app.com/about thatthe about.html fileis
rendered.

While these samples illustrate how to render html pages for a user, routes can also be used to call APIs when a
button is pressed, or take any number of actions without having to navigate away from the homepage. You'll see
this in action when you create routes for translation, sentiment, and speech synthesis.

Get started

1. Open the project in your IDE, then create a file named app.py in the root of your working directory. Next,

copy this code into app.py and save:

from flask import Flask, render_template, url_for, jsonify, request

app = Flask(__name__)
app.config["JSON_AS_ASCII'] = False

@app.route('/")
def index():
return render_template('index.html")

This code block tells the app to display index.html whenever a user navigates to the root of your web
app (/).

2. Next, let's create the front-end for our web app. Create a file named index.html in the templates

directory. Then copy this code into templates/index.html .

http://flask.pocoo.org/docs/1.0/api/#flask.Flask.route

<!ldoctype html>
<html lang="en">
<head>
<!-- Required metadata tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description” content="Translate and analyze text with Azure Cognitive Services.">
<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-
Gn5384xqQ1aoWXA+058RXPxPg6fy4IWVTNhOE263XmFcI1SAwiGgFAW/dAiS6IXm" crossorigin="anonymous">
<title>Translate and analyze text with Azure Cognitive Services</title>
</head>
<body>
<div class="container">
<h1>Translate, synthesize, and analyze text with Azure</hl>
<p>This simple web app uses Azure for text translation, text-to-speech conversion, and
sentiment analysis of input text and translations. Learn more about Azure Cognitive Services.
</p>
<!-- HTML provided in the following sections goes here. -->

<!-- End -->
</div>

<!-- Required Javascript for this tutorial -->

<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-
KJ302DKtIkvYIK3UENzZmM7KCkRr/rE9/Qpg6aAZGIwFDMVNA/GpGFF93hXpG5KKkN" crossorigin="anonymous"></script>

<script src="https://ajax.googleapis.com/ajax/1libs/jquery/3.3.1/jquery.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min.js"
integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfaob4Q"
crossorigin="anonymous"></script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"
integrity="sha384-3ZR6Spejh4u02d8jO0t6VLEHfe/IQGiRRSQQXSTFWpilMquVdAyjUar5+76PVCmyY1"
crossorigin="anonymous"></script>

<script type = "text/javascript" src ="static/scripts/main.js"></script>

</body>

</html>

3. Let's test the Flask app. From the terminal, run:
flask run

4. Open a browser and navigate to the URL provided. You should see your single page app. Press Ctrl + C
to kill the app.

Translate text

Now that you have an idea of how a simple Flask app works, let's:

e Write some Python to call the Translator and return a response
e Create a Flask route to call your Python code
e Update the HTML with an area for text input and translation, a language selector, and translate button

e \Write JavaScript that allows users to interact with your Flask app from the HTML

Call the Translator

The first thing you need to do is write a function to call the Translator. This function will take two arguments:
text_input and language_output . This function is called whenever a user presses the translate button in your
app. The text area in the HTML is sent as the text_input , and the language selection value in the HTML is sent

as language_output .

1. Let's start by creating a file called translate.py in the root of your working directory.

2. Next, add this code to translate.py . This function takes two arguments: text_input and 1language_output .

import os, requests, uuid, json

Don't forget to replace with your Cog Services subscription key!

If you prefer to use environment variables, see Extra Credit for more info.
subscription_key = 'YOUR_TRANSLATOR_TEXT_SUBSCRIPTION_KEY'

location = "YOUR_TRANSLATOR_RESOURCE_LOCATION'

Don't forget to replace with your Cog Services location!

Our Flask route will supply two arguments: text_input and language_output.

When the translate text button is pressed in our Flask app, the Ajax request
will grab these values from our web app, and use them in the request.

See main.js for Ajax calls.

def get_translation(text_input, language_output):

base_url = 'https://api.cognitive.microsofttranslator.com'
path = '/translate?api-version=3.0"'
params = '&to=' + language_output

constructed_url = base_url + path + params

headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
'Ocp-Apim-Subscription-Region': location,
'Content-type': 'application/json',
'X-ClientTracelId': str(uuid.uuid4())

You can pass more than one object in body.
body = [{
"text' : text_input
1]
response = requests.post(constructed_url, headers=headers, json=body)
return response.json()

3. Add your Translator subscription key and save.

Add aroute to app.py

Next, you'll need to create a route in your Flask app that calls translate.py . This route will be called each time a

user presses the translate button in your app.

For this app, your route is going to accept PosT requests. This is because the function expects the text to
translate and an output language for the translation.

Flask provides helper functions to help you parse and manage each request. In the code provided, get_json()
returns the data from the posT request as JSON. Then using data['text'] and data['to'] , the text and output
language values are passed to get_translation() function available from translate.py . The last step is to

return the response as JSON, since you'll need to display this data in your web app.

In the following sections, you'll repeat this process as you create routes for sentiment analysis and speech
synthesis.

1. Open app.py and locate the import statement at the top of app.py and add the following line:

import translate

Now our Flask app can use the method available via translate.py .

2. Copy this code to the end of app.py and save:

@app.route('/translate-text', methods=["'POST'])
def translate_text():
data = request.get_json()
text_input = data['text']
translation_output = data['to']
response = translate.get_translation(text_input, translation_output)
return jsonify(response)

Update index.html

Now that you have a function to translate text, and a route in your Flask app to call it, the next step is to start

building the HTML for your app. The HTML below does a few things:

Provides a text area where users can input text to translate.

Includes a language selector.

Includes HTML elements to render the detected language and confidence scores returned during translation.
Provides a read-only text area where the translation output is displayed.

Includes placeholders for sentiment analysis and speech synthesis code that you'll add to this file later in the
tutorial.

Let's update index.html .

1.

2.

Open index.html and locate these code comments:

<!-- HTML provided in the following sections goes here. -->

<!-- End -->

Replace the code comments with this HTML block:

<div class="row">
<div class="col">
<form>
<!-- Enter text to translate. -->
<div class="form-group">
<label for="text-to-translate">Enter the text you'd like to translate:
</label>
<textarea class="form-control" id="text-to-translate" rows="5"></textarea>
</div>
<!-- Select output language. -->
<div class="form-group">
<label for="select-language">Translate to:</label>
<select class="form-control” id="select-language">
<option value="ar">Arabic</option>
<option value="ca">Catalan</option>
<option value="zh-Hans">Chinese (Simplified)</option>
<option value="zh-Hant">Chinese (Traditional)</option>
<option value="hr">Croatian</option>
<option value="en">English</option>
<option value="fr">French</option>
<option value="de">German</option>
<option value="el">Greek</option>
<option value="he">Hebrew</option>
<option value="hi">Hindi</option>
<option value="it">Italian</option>
<option value="ja">Japanese</option>
<option value="ko">Korean</option>
<option value="pt">Portuguese</option>
<option value="ru">Russian</option>
<option value="es">Spanish</option>
<option value="th">Thai</option>

£} T T R R

<option value="Tr >Iurkilsn</option>
<option value="vi">Vietnamese</option>
</select>
</div>
<button type="submit" class="btn btn-primary mb-2" id="translate">Translate text</button></br>
<div id="detected-language" style="display: none">
Detected language:

Detection confidence:

</div>

<!-- Start sentiment code-->
<!-- End sentiment code -->
</form>
</div>
<div class="col">
<!-- Translated text returned by the Translate API is rendered here. -->
<form>
<div class="form-group" id="translator-text-response">
<label for="translation-result">Translated text:</label>
<textarea readonly class="form-control" id="translation-result" rows="5"></textarea>
</div>
<!-- Start voice font selection code -->
<!-- End voice font selection code -->
</form>
<!-- Add Speech Synthesis button and audio element -->

<!-- End Speech Synthesis button -->

</div>
</div>

The next step is to write some JavaScript. This is the bridge between your HTML and Flask route.

Create main.js

The main.js fileis the bridge between your HTML and Flask route. Your app will use a combination of jQuery,
Ajax, and XMLHttpRequest to render content, and make PosT requests to your Flask routes.

In the code below, content from the HTML is used to construct a request to your Flask route. Specifically, the
contents of the text area and the language selector are assigned to variables, and then passed along in the
request to translate-text .

The code then iterates through the response, and updates the HTML with the translation, detected language, and
confidence score.

1. From your IDE, create a file named main.js inthe static/scripts directory.

2. Copy this code into static/scripts/main.js :

//Initiate jQuery on load.
$(function() {
//Translate text with flask route
$("#translate").on("click", function(e) {
e.preventDefault();
var translateVal = document.getElementById("text-to-translate").value;
var languageVal = document.getElementById("select-language").value;

var translateRequest = { 'text': translateval, 'to': languageVal }

if (translateval !== "") {

$.ajax({

url: '/translate-text',

method: 'POST',

headers: {
'Content-Type':'application/json’

})

dataType: 'json',

data: JSON.stringify(translateRequest),

success: function(data) {

for (var i = @; i < data.length; i++) {

document.getElementById("translation-result").textContent = data[i].translations[@].text;
document.getElementById("detected-language-result").textContent =

data[i].detectedLanguage.language;

b
s

if (document.getElementById("detected-language-result").textContent !== ""){
document.getElementById("detected-language").style.display = "block";

}

document.getElementById("confidence").textContent = data[i].detectedLanguage.score;

}

s

// In the following sections, you'll add code for sentiment analysis and
// speech synthesis here.

b))

Test translation

Let's test translation in the app.

flask run

Navigate to the provided server address. Type text into the input area, select a language, and press translate. You

should get a translation. If it doesn't work, make sure that you've added your subscription key.

TIP

If the changes you've made aren't showing up, or the app doesn't work the way you expect it to, try clearing your cache

or opening a private/incognito window.

Press CTRL + c to kill the app, then head to the next section.

Analyze sentiment

The Text Analytics APl can be used to perform sentiment analysis, extract key phrases from text, or detect the

source language. In this app, we're going to use sentiment analysis to determine if the provided text is positive,

neutral, or negative. The API returns a numeric score between 0 and 1. Scores close to 1 indicate positive

sentiment, and scores close to 0 indicate negative sentiment.

In this section, you're going to do a few things:

Write some Python to call the Text Analytics API to perform sentiment analysis and return a response

Create a Flask route to call your Python code

Update the HTML with an area for sentiment scores, and a button to perform analysis

Write JavaScript that allows users to interact with your Flask app from the HTML

Call the Text Analytics API

Let's write a function to call the Text Analytics API. This function will take four arguments: input_text ,
input_language , output_text ,and output_language . This function is called whenever a user presses the run
sentiment analysis button in your app. Data provided by the user from the text area and language selector, as

well as the detected language and translation output are provided with each request. The response object
includes sentiment scores for the source and translation. In the following sections, you're going to write some

JavaScript to parse the response and use it in your app. For now, let's focus on call the Text Analytics API.

1. Let's create a file called sentiment.py in the root of your working directory.

2. Next, add this code to sentiment.py .

import os, requests, uuid, json

Don't forget to replace with your Cog Services subscription key!
subscription_key = 'YOUR_TEXT_ANALYTICS_SUBSCRIPTION_KEY'

endpoint = "YOUR_TEXT_ANALYTICS_ENDPOINT"

Our Flask route will supply four arguments: input_text, input_language,
output_text, output_language.

When the run sentiment analysis button is pressed in our Flask app,

the Ajax request will grab these values from our web app, and use them
in the request. See main.js for Ajax calls.

def get_sentiment(input_text, input_language):
path = '/text/analytics/v3.0/sentiment’
constructed_url = endpoint + path

headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
'Content-type': 'application/json',
'X-ClientTracelId': str(uuid.uuid4())

You can pass more than one object in body.
body = {
'documents': [

{
'language': input_language,
'id': '1',
"text': input_text

})

}

response = requests.post(constructed_url, headers=headers, json=body)
return response.json()

3. Add your Text Analytics subscription key and save.

Add aroute to app.py

Let's create a route in your Flask app that calls sentiment.py . This route will be called each time a user presses
the run sentiment analysis button in your app. Like the route for translation, this route is going to accept posT

requests since the function expects arguments.

1. Open app.py and locate the import statement at the top of app.py and update it:

import translate, sentiment

Now our Flask app can use the method available via sentiment.py .

2. Copy this code to the end of app.py and save:

@app.route('/sentiment-analysis', methods=["'POST'])
def sentiment_analysis():
data = request.get_json()
input_text = data['inputText']
input_lang = data['inputLanguage']
response = sentiment.get_sentiment(input_text, input_lang)
return jsonify(response)

Update index.html

Now that you have a function to run sentiment analysis, and a route in your Flask app to call it, the next step is
to start writing the HTML for your app. The HTML below does a few things:

e Adds a button to your app to run sentiment analysis
e Adds an element that explains sentiment scoring

e Adds an element to display the sentiment scores

1. Open index.html and locate these code comments:

<!-- Start sentiment code-->

<!-- End sentiment code -->
2. Replace the code comments with this HTML block:

<button type="submit" class="btn btn-primary mb-2" id="sentiment-analysis">Run sentiment
analysis</button></br>
<div id="sentiment" style="display: none">
<p>Sentiment can be labeled as "positive", "negative", "neutral", or "mixed". </p>
Sentiment label for input:

</div>
Update main.js

In the code below, content from the HTML is used to construct a request to your Flask route. Specifically, the
contents of the text area and the language selector are assigned to variables, and then passed along in the
request to the sentiment-analysis route.

The code then iterates through the response, and updates the HTML with the sentiment scores.
1. From your IDE, create a file named main.js inthe static directory.

2. Copy this code into static/scripts/main.js :

//Run sentiment analysis on input and translation.
$("#sentiment-analysis").on("click", function(e) {
e.preventDefault();
var inputText = document.getElementById("text-to-translate").value;
var inputLanguage = document.getElementById("detected-language-result").innerHTML;
var outputText = document.getElementById("translation-result").value;
var outputlLanguage = document.getElementById("select-language").value;

var sentimentRequest = { "inputText": inputText, "inputLanguage": inputlLanguage};

if (inputText !== "") {
$.ajax({

url: "/sentiment-analysis"”,

method: "POST",

headers: {
"Content-Type":"application/json"

}s

dataType: "json",

data: JSON.stringify(sentimentRequest),

success: function(data) {

for (var i = 0; i < data.documents.length; i++) {
if (typeof data.documents[i] !== "undefined"){
if (data.documents[i].id === "1") {
document.getElementById("input-sentiment").textContent = data.documents[i].sentiment;

}
for (var i = @; i < data.errors.length; i++) {
if (typeof data.errors[i] !== "undefined"){
if (data.errors[i].id === "1") {
document.getElementById("input-sentiment").textContent = data.errors[i].message;

}
if (document.getElementById("input-sentiment").textContent !== "'"'){
document.getElementById("sentiment").style.display = "block";

}

s
}
s

// In the next section, you'll add code for speech synthesis here.

Test sentiment analysis

Let's test sentiment analysis in the app.

flask run

Navigate to the provided server address. Type text into the input area, select a language, and press translate. You
should get a translation. Next, press the run sentiment analysis button. You should see two scores. If it doesn't
work, make sure that you've added your subscription key.

TIP

If the changes you've made aren't showing up, or the app doesn't work the way you expect it to, try clearing your cache

or opening a private/incognito window.

Press CTRL + c to kill the app, then head to the next section.

Convert text-to-speech

The Text-to-speech API enables your app to convert text into natural human-like synthesized speech. The service
supports standard, neural, and custom voices. Our sample app uses a handful of the available voices, for a full
list, see supported languages.

In this section, you're going to do a few things:

e Write some Python to convert text-to-speech with the Text-to-speech API
e Create a Flask route to call your Python code
e Update the HTML with a button to convert text-to-speech, and an element for audio playback

e Write JavaScript that allows users to interact with your Flask app

Call the Text-to-Speech API

Let's write a function to convert text-to-speech. This function will take two arguments: input_text and
voice_font . This function is called whenever a user presses the convert text-to-speech button in your app.

input_text is the translation output returned by the call to translate text, voice_font is the value from the voice
font selector in the HTML.

1. Let's create a file called synthesize.py in the root of your working directory.

2. Next, add this code to synthesize.py .

https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/text-to-speech
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support

import os, requests, time
from xml.etree import ElementTree

class TextToSpeech(object):
def __init_ (self, input_text, voice_font):

subscription_key = 'YOUR_SPEECH_SERVICES_SUBSCRIPTION_KEY'
self.subscription_key = subscription_key
self.input_text = input_text
self.voice_font = voice_font
self.timestr = time.strftime('%Y%m%d-%H%M")
self.access_token = None

This function performs the token exchange.
def get_token(self):
fetch_token_url = 'https://westus.api.cognitive.microsoft.com/sts/v1.0/issueToken’
headers = {
'Ocp-Apim-Subscription-Key': self.subscription_key
}
response = requests.post(fetch_token_url, headers=headers)
self.access_token = str(response.text)

This function calls the TTS endpoint with the access token.
def save_audio(self):
base_url = 'https://westus.tts.speech.microsoft.com/’
path = 'cognitiveservices/v1l'
constructed_url = base_url + path
headers = {
'Authorization': 'Bearer ' + self.access_token,
'Content-Type': 'application/ssml+xml’,
'X-Microsoft-OutputFormat': 'riff-24khz-16bit-mono-pcm’',
'User-Agent': 'YOUR_RESOURCE_NAME',
}
Build the SSML request with ElementTree
xml_body = ElementTree.Element('speak', version='1.0")
xml_body.set('{http://www.w3.0rg/XML/1998/namespace}lang’, 'en-us')
voice = ElementTree.SubElement(xml_body, 'voice')
voice.set('{http://www.w3.0rg/XML/1998/namespace}lang', 'en-US")
voice.set('name', 'Microsoft Server Speech Text to Speech Voice {}'.format(self.voice_font))
voice.text = self.input_text
The body must be encoded as UTF-8 to handle non-ascii characters.
body = ElementTree.tostring(xml_body, encoding="utf-8")

#Send the request
response = requests.post(constructed_url, headers=headers, data=body)

Write the response as a wav file for playback. The file is located
in the same directory where this sample is run.
return response.content

3. Add your Speech Services subscription key and save.

Add aroute to app.py

Let's create a route in your Flask app that calls synthesize.py . This route will be called each time a user presses
the convert text-to-speech button in your app. Like the routes for translation and sentiment analysis, this route is
going to accept PosT requests since the function expects two arguments: the text to synthesize, and the voice

font for playback.

1. Open app.py and locate the import statement at the top of app.py and update it:

import translate, sentiment, synthesize

Now our Flask app can use the method available via synthesize.py .

2. Copy this code to the end of app.py and save:

@app.route('/text-to-speech', methods=["'POST'])
def text_to_speech():
data = request.get_json()
text_input = data['text']
voice_font = data['voice']
tts = synthesize.TextToSpeech(text_input, voice_font)
tts.get_token()
audio_response = tts.save_audio()
return audio_response

Update index.html

Now that you have a function to convert text-to-speech, and a route in your Flask app to call it, the next step is to
start writing the HTML for your app. The HTML below does a few things:

e Provides a voice selection drop-down
e Adds a button to convert text-to-speech

e Adds an audio element, which is used to play back the synthesized speech

1. Open index.html and locate these code comments:

<!-- Start voice font selection code -->

<!-- End voice font selection code -->

2. Replace the code comments with this HTML block:

<div class="form-group">

<label for="select-voice">Select voice font:</label>

<select class="form-control” id="select-voice">
<option value="(ar-SA, Naayf)">Arabic | Male | Naayf</option>
<option value="(ca-ES, HerenaRUS)">Catalan | Female | HerenaRUS</option>
<option value="(zh-CN, HuihuiRUS)">Chinese (Mainland) | Female | HuihuiRUS</option>
<option value="(zh-CN, Kangkang, Apollo)">Chinese (Mainland) | Male | Kangkang, Apollo</option>
<option value="(zh-HK, Tracy, Apollo)">Chinese (Hong Kong)| Female | Tracy, Apollo</option>
<option value="(zh-HK, Danny, Apollo)">Chinese (Hong Kong) | Male | Danny, Apollo</option>
<option value="(zh-TW, Yating, Apollo)">Chinese (Taiwan)| Female | Yating, Apollo</option>
<option value="(zh-TW, Zhiwei, Apollo)">Chinese (Taiwan) | Male | Zhiwei, Apollo</option>
<option value="(hr-HR, Matej)">Croatian | Male | Matej</option>
<option value="(en-US, AriaRUS)">English (US) | Female | AriaRUS</option>
<option value="(en-US, Guy24kRUS)">English (US) | Male | Guy24kRUS</option>
<option value="(en-IE, Sean)">English (IE) | Male | Sean</option>
<option value="(fr-FR, Julie, Apollo)">French | Female | Julie, Apollo</option>
<option value="(fr-FR, HortenseRUS)">French | Female | Julie, HortenseRUS</option>
<option value="(fr-FR, Paul, Apollo)">French | Male | Paul, Apollo</option>
<option value="(de-DE, Hedda)">German | Female | Hedda</option>
<option value="(de-DE, HeddaRUS)">German | Female | HeddaRUS</option>
<option value="(de-DE, Stefan, Apollo)">German | Male | Apollo</option>
<option value="(el-GR, Stefanos)">Greek | Male | Stefanos</option>
<option value="(he-IL, Asaf)">Hebrew (Isreal) | Male | Asaf</option>
<option value="(hi-IN, Kalpana, Apollo)">Hindi | Female | Kalpana, Apollo</option>
<option value="(hi-IN, Hemant)">Hindi | Male | Hemant</option>
<option value="(it-IT, LuciaRUS)">Italian | Female | LuciaRUS</option>
<option value="(it-IT, Cosimo, Apollo)">Italian | Male | Cosimo, Apollo</option>
<option value="(ja-JP, Ichiro, Apollo)">Japanese | Male | Ichiro</option>
<option value="(ja-JP, HarukaRUS)">Japanese | Female | HarukaRUS</option>
<option value="(ko-KR, HeamiRUS)">Korean | Female | Heami</option>
<option value="(pt-BR, HeloisaRUS)">Portuguese (Brazil) | Female | HeloisaRUS</option>
<option value="(pt-BR, Daniel, Apollo)">Portuguese (Brazil) | Male | Daniel, Apollo</option>
<option value="(pt-PT, HeliaRUS)">Portuguese (Portugal) | Female | HeliaRUS</option>
<option value="(ru-RU, Irina, Apollo)">Russian | Female | Irina, Apollo</option>
<option value="(ru-RU, Pavel, Apollo)">Russian | Male | Pavel, Apollo</option>
<option value="(ru-RU, EkaterinaRUS)">Russian | Female | EkaterinaRUS</option>
<option value="(es-ES, Laura, Apollo)">Spanish | Female | Laura, Apollo</option>
<option value="(es-ES, HelenaRUS)">Spanish | Female | HelenaRUS</option>
<option value="(es-ES, Pablo, Apollo)">Spanish | Male | Pablo, Apollo</option>
<option value="(th-TH, Pattara)">Thai | Male | Pattara</option>
<option value="(tr-TR, SedaRUS)">Turkish | Female | SedaRUS</option>
<option value="(vi-VN, An)">Vietnamese | Male | An</option>

</select>

</div>

3. Next, locate these code comments:

<!-- Add Speech Synthesis button and audio element -->

<!-- End Speech Synthesis button -->

4. Replace the code comments with this HTML block:

<button type="submit" class="btn btn-primary mb-2" id="text-to-speech">Convert text-to-speech</button>
<div id="audio-playback">
<audio id="audio" controls>

<source id="audio-source" type="audio/mpeg" />

</audio>
</div>

5. Make sure to save your work.

Update main.js

In the code below, content from the HTML is used to construct a request to your Flask route. Specifically, the
translation and the voice font are assigned to variables, and then passed along in the request to the

text-to-speech route.
The code then iterates through the response, and updates the HTML with the sentiment scores.

1. From your IDE, create a file named main.js inthe static directory.

2. Copy this code into static/scripts/main.js :

// Convert text-to-speech
$("#text-to-speech").on("click", function(e) {
e.preventDefault();
var ttsInput = document.getElementById("translation-result").value;
var ttsVoice = document.getElementById("select-voice").value;
var ttsRequest = { 'text': ttsInput, 'voice': ttsVoice }

var xhr = new XMLHttpRequest();
xhr.open("post", "/text-to-speech", true);
xhr.setRequestHeader("Content-Type", "application/json");

xhr.responseType = "blob";
xhr.onload = function(evt){
if (xhr.status === 200) {

audioBlob = new Blob([xhr.response], {type: "audio/mpeg"});
audioURL = URL.createObjectURL(audioBlob);
if (audioURL.length > 5){
var audio = document.getElementById("audio");
var source = document.getElementById("audio-source");
source.src = audioURL;
audio.load();
audio.play();
}else{
console.log("An error occurred getting and playing the audio.")

}
xhr.send(JSON.stringify(ttsRequest));

s

// Code for automatic language selection goes here.

3. You're almost done. The last thing you're going to do is add some code to main.js to automatically selecta
voice font based on the language selected for translation. Add this code block to main.js :

// Automatic voice font selection based on translation output.
$('select[id="select-1language"]"').change(function(e) {
if ($(this).val() == "ar"){
document.getElementById("select-voice").value = "(ar-SA, Naayf)";

}
if ($(this).val() == "ca"){
document.getElementById("select-voice").value = "(ca-ES, HerenaRUS)";
}
if ($(this).val() == "zh-Hans"){
document.getElementById("select-voice").value = "(zh-HK, Tracy, Apollo)";
}
if ($(this).val() == "zh-Hant"){
document.getElementById("select-voice").value = "(zh-HK, Tracy, Apollo)";
}
if ($(this).val() == "hr"){
document.getElementById("select-voice").value = "(hr-HR, Matej)";
}

if ($(this).val() == "en"){
document.getElementById("select-voice").value = "(en-US, Jessa24kRUS)";

}
if ($(this).val() == "fr"){

document.getElementById("select-voice").value = "(fr-FR, HortenseRUS)";
}

if ($(this).val() == "de"){
document.getElementById("select-voice").value = "(de-DE, HeddaRUS)";

}

if ($(this).val() == "el"){
document.getElementById("select-voice").value = "(el-GR, Stefanos)";

}

if ($(this).val() == "he"){
document.getElementById("select-voice").value = "(he-IL, Asaf)";

}

if ($(this).val() == "hi"){
document.getElementById("select-voice").value = "(hi-IN, Kalpana, Apollo)";

}

if ($(this).val() == "it"){
document.getElementById("select-voice").value = "(it-IT, LuciaRUS)";

}

if ($(this).val() == "ja"){
document.getElementById("select-voice").value = "(ja-JP, HarukaRUS)";

}

if ($(this).val() == "ko"){
document.getElementById("select-voice").value = "(ko-KR, HeamiRUS)";

}

if ($(this).val() == "pt"){
document.getElementById("select-voice").value = "(pt-BR, HeloisaRUS)";

}

if ($(this).val() == "ru"){
document.getElementById("select-voice").value = "(ru-RU, EkaterinaRUS)";

}

if ($(this).val() == "es"){
document.getElementById("select-voice").value = "(es-ES, HelenaRUS)";

}

if ($(this).val() == "th"){
document.getElementById("select-voice").value = "(th-TH, Pattara)";

}

if ($(this).val() == "tr"){
document.getElementById("select-voice").value = "(tr-TR, SedaRUS)";

}
if ($(this).val() == "vi"){
document.getElementById("select-voice").value = "(vi-VN, An)";
}
1)
Test your app

Let's test speech synthesis in the app.

flask run

Navigate to the provided server address. Type text into the input area, select a language, and press translate. You
should get a translation. Next, select a voice, then press the convert text-to-speech button. the translation should
be played back as synthesized speech. If it doesn't work, make sure that you've added your subscription key.

TIP

If the changes you've made aren't showing up, or the app doesn't work the way you expect it to, try clearing your cache
or opening a private/incognito window.

That's it, you have a working app that performs translations, analyzes sentiment, and synthesized speech. Press
CTRL + c to kill the app. Be sure to check out the other Azure Cognitive Services.

Get the source code

The source code for this project is available on GitHub.

Next steps

e Translator reference
e Text Analytics API reference

e Text-to-speech API reference

https://docs.microsoft.com/en-us/azure/cognitive-services/index
https://github.com/MicrosoftTranslator/Text-Translation-API-V3-Flask-App-Tutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference
https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics.V2.0/operations/56f30ceeeda5650db055a3c7
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/rest-text-to-speech

Extract information in Excel using Text Analytics and

Power Automate

5/13/2021 « 6 minutes to read « Edit Online

In this tutorial, you'll create a Power Automate flow to extract text in an Excel spreadsheet without having to
write code.

This flow will take a spreadsheet of issues reported about an apartment complex, and classify them into two
categories: plumbing and other. It will also extract the names and phone numbers of the tenants who sent them.
Lastly, the flow will append this information to the Excel sheet.

In this tutorial, you'll learn how to:

o Use Power Automate to create a flow
e Upload Excel data from OneDrive for Business
e Extract text from Excel, and send it to the Text Analytics API

e Use the information from the API to update an Excel sheet.

Prerequisites

e A Microsoft Azure account. Create a free account or sign in.

e AText Analytics resource. If you don't have one, you can create one in the Azure portal and use the free tier to
complete this tutorial.

e The key and endpoint that was generated for you during sign-up.
e A spreadsheet containing tenant issues. Example data is provided on GitHub

o Microsoft 365, with OneDrive for business.

Add the Excel file to OneDrive for Business

Download the example Excel file from GitHub. This file must be stored in your OneDrive for Business account.

Issue ﬂ Description ﬂ PersonName ﬂ PhoneNumber ﬂ IssueType ﬂ
1 I am calling to report a plumbing issue in my apartment. 1 am in 2A. My name is Gabriel Diaz. My phone number is 425-555-0122.
2 Iam calling to report a problem with our electricity. My name is Maya Robinsan. And my phone number is 305-555-0122.

3 lam calling to report an issue with our washer. | am in apartment 5A. My phone number is 206-555-0122. | am Anthony Ivanov.
4 My name is Monica Thomsan. 1 am in 1B. My garage door is not opening. Please call me at 360-555-0122.

5 My name is Avery Howard. | am in 2B. My heater is not working. Please call me at 604-555-0122.

oW W =

The issues are reported in raw text. We will use the Text Analytics API's Named Entity Recognition to extract the
person name and phone number. Then the flow will look for the word "plumbing" in the description to
categorize the issues.

Create a new Power Automate workflow

Go to the Power Automate site, and login. Then click Create and Scheduled flow.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/tutorials/extract-excel-information.md
https://azure.microsoft.com/free/cognitive-services/
https://portal.azure.com/
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://github.com/Azure-Samples/cognitive-services-sample-data-files/blob/master/TextAnalytics/sample-data/ReportedIssues.xlsx
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/example-data.png#lightbox
https://preview.flow.microsoft.com/

© ¥ Manage your flows | Microsoft P x|

& C W () https/preview.flow.microsoftc.. & & 13
. Environments
= Microsoft Power Automate O search for helpful resources &\ personal Productivity
- Three ways to make a flow Install
f Home
Start from blank @
[Action items v
o My flows D/D % @
+ + +
{ Create

A Templates Automated cloud flow Scheduled cloud flow

Triggered by a designated Instant cloud flow You choose when and how

event. Triggered manually as needed. often it runs.
¥ Connectors

Data e
N Monitor v =l 1
=y +

0@ Al Builder ~

Desktop flow Business process flow
(1) Procgss advisor Automates processes on your Guides users through a
- (preview) desktop environment. multistep process.
N Solutions
@ Learn

Start from a template @ &2 Search all templates

On the Build a scheduled cloud flow page, initialize your flow with the following fields:

FIELD VALUE

Flow name Scheduled Review or another name.
Starting Enter the current date and time.
Repeat every 1 hour

Add variables to the flow

Create variables representing the information that will be added to the Excel file. Click New Step and search for
Initialize variable. Do this four times, to create four variables.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/flow-creation.png#lightbox

E Recurrence L
E Choose an action X

DO initialize

All Built-in Standard Premium Custom My clipboard

IE)
l ;\. J

Variable

Triggers Actions See more

Initialize variable
{ } Variable @

Don't see what you need?

@ Help us decide which connectors and triggers to add next with UserVoice

Add the following information to the variables you created. They represent the columns of the Excel file. If any
variables are collapsed, you can click on them to expand them.

ACTION NAME TYPE VALUE
Initialize variable var_person String Person
Initialize variable 2 var_phone String Phone Number
Initialize variable 3 var_plumbing String plumbing

Initialize variable 4 var_other String other

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/initialize-variables.png#lightbox

Initialize variable @

*MName |

var_person
*Type String W |
Valuwe Person
l
[\} Initialize variable 2 @ -
*Name var_phone |
* Type String - |
Value Phaone Number
'
+
N
[\} Initialize variable 3 @ .-
*Name var_plumbing |
*Type String d |
Value plumbing
'
¥
NN
Initialize variable 4 @
*Name var_other ‘
* Type | String - |
Value other

Read the excel file

Click New Step and type Excel, then select List rows present in a table from the list of actions.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/flow-variables.png#lightbox

E Choose an action X

O excel

All Built-in Standard Premium Custom My clipboard

B & 08 B

Excel Online Excel Online Cloudmersiv Plurmsail SeekTable Document Ermvoy
(Business) (OneDrive} e Docume... Documents Merge
W

Triggers Actions See more

@ List rows present in a table al
Excel Online (Business) ©

@ Add a key column to a table
Excel Online (Business) ©

@ Get a row
Excel Online (Business) ©
@ Get worksheets
Excel Online (Business) ©
@ Update a row
Excel Online (Business) ©

@ Run seript (preview)
Excel Online (Business) ©

Add the Excel file to the flow by filling in the fields in this action. This tutorial requires the file to have been
uploaded to OneDrive for Business.

Initialize variable 4 .he

List rows present in a table -

* Location | Onelirive for Business A¥
* Document Library | Onelrive 1
*File | JReportaedlssues xlsx 3
*Table | Tabled X

Shaw advanced options

Click New Step and add an Apply to each action.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/list-excel-rows.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/list-excel-rows-options.png#lightbox

E Choose an action x

P apply

All Built-in Standard Premium Custom My clipboard

BECEH 7/

Contral SharePoint SproketPowe SigningHub Plumsail SP Encodian Cloudmersiv
rActions e Docume...
A

Triggers Actions See mare

Apply to each 2
Control ©

Get files (properties only)

SharePoint @

E Apply Template To New Created Sub-Site (preview) ®

SproketPowerfctions
Apply template (preview) PREMIUM ®
SigningHub

ﬁ Apply SharePoint Site Design

Plumsail 5P @
f Redact PDF
Encodian o

Click on Select an output from previous step. In the Dynamic content box that appears, select value.

List rows present in a table

+) Dynamic content Expression
Apply to each T ‘ £ Search dynamic content
*Select an output from previous steps List rows present in a table
value x | ‘
==l value
Add dynamic content I List of ltems

Send a request to the Text Analytics API

If you haven't already, you need to create a Text Analytics resource in the Azure portal.

Create a Text Analytics connection

In the Apply to each, click Add an action. Go to your Text Analytics resource's key and endpoint page in the
Azure portal, and get the key and endpoint for your Text Analytics resource.

In your flow, enter the following information to create a new Text Analytics connection.

NOTE

If you already have created a Text Analytics connection and want to change your connection details, Click on the ellipsis
on the top right corner, and click + Add new connection.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/select-output.png#lightbox
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics

FIELD

Connection Name

Account key

Site URL

List rows prasent in a table
Apply to each

*Select an output from previous steps

value %

E Text Analytics

* Connection Name

VALUE

A name for the connection to your Text Analytics resource.
For example, TAforPowerAutomate .

The key for your Text Analytics resource.

The endpoint for your Text Analytics resource.

TAforPowerAutomate

* Aocount Key

Sile LRL

https://taforpowerautomate. cognitiveservices azure com/

Extract the excel content

After the connection is created, search for Text Analytics and select Named Entity Recognition. This will

extract information from the description column of the issue.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-credentials.png#lightbox

E Choose an operation X

,’D text analyticsi

All Built-in Standard Premium Custom My clipboard

EEER08 Z

Text Analytics Al Builder Text MSGI1 for Microsoft Content Encodian
Functions SMS Text &. Teams Conversion

Triggers Actions Help See more

Named Entity Recognition (V3.0)
Text Analytics ©

Sentiment (V3.0)
Text Analytics ©

Entity Linking (V3.0)
Text Analytics

=J Recognize text in an image
Al Builder 0

Extract the key phrases from text
Al Builder O

Translate text into another language
Al Builder @

Click in the Text field and select Description from the Dynamic content windows that appears. Enter en for
Language, and a unique name as the document ID (you might need to click Show advanced options).

|E Named Entity Recognition (V3.0) @ .-

*documents id - 1

issue ‘

| * documents text - 1

E Description x

Add dv

i Add dynamic content from the apps and connectors
{ documents language - 1 used in this flow.

en

{ Dynamic content Expression
‘ + Add new item ‘

Model Version (Optional) This value indicates which model will be - descriptior{

Show Statistics ‘ Optional) if set to true, response will contain input
©p) P PUY List rows present in a table

+ E Description

A4

Within the Apply to each, click Add an action and create another Apply to each action. Click inside the text
box and select documents in the Dynamic Content window that appears.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/extract-info.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/description-from-dynamic-content.png#lightbox

Apply to each

Select an output from previous steps

value x

Named Entity Recognition (V3.0) @ -

+
v

Apply to each 2 v

* Select an output from previous steps

‘Select an output from previous steps’ is required.
Add dynamic cont-

Add dynamic content from the apps and connectors

used in this flow.

Dynamic content Expression
f Add an action Y P

| £ documents ‘

Named Entity Recognition (V3.0)

f Add an action

id
Document Id.

documentsCount
Number of documents submitted in the request.

validDocumentsCount

+ New step Save E Number of valid documents. This excludes empty, over-

erroneousDocumentsCount
Number of invalid documents. This includes empty, ove

documents
Response by document

Extract the person name

Next, we will find the person entity type in the Text Analytics output. Within the Apply to each 2, click Add an
action, and create another Apply to each action. Click inside the text box and select Entities in the Dynamic
Content window that appears.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/apply-to-each-documents.png#lightbox

Apply to each

*Select an output from previous steps

value x

E Named Entity Recognition (V3.0)
Apply to each 2

Select an output from previous steps

J

#

E documents x

Apply to each 3

*Select an output from previous steps

‘Select an output from previous steps’ is required.

f Add an action

Add dynamic cont-

f Add an action

Add dynamic content from the apps and connectors

used in this flow.

Dynamic content Expression

| pe entities{

Named Entity Recognition (V3.0)

entities
Recognized entities in the document.

Within the newly created Apply to each 3 action, click Add an action, and add a Condition control.

A Apply to each 3

" Select an output from previous steps

E entities

E Choose an operation

O condition

All Built-in Standard Premium
Control SharePoint intellink FHIRClinic
Triggers Actions Help
Condition
Control
—

Custom

[

al Acumatica

My clipboard

airslate

Captisa
Forms

See more

In the Condition window, click on the first text box. In the Dynamic content window, search for Category and

select it.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action-2.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/create-condition.png#lightbox

ﬁ Condition LI

I Choose a value Choose a value
Add dynamic content

Add dynamic content from the apps and connectors Hide

_’. Add -~ used in this flow.

Dynamic content Expression

/O categol)l

Named Entity Recognition (V3.0)

n action E category
Entity type, such as Person/Location/Org/55N etc

Make sure the second box is set to is equal to. Then select the third box, and search for var_person in the

Dynamic content window.

Condition GOC

E category x H is equal to v H fhoose a value

Add dynamic content [El

Add dynamic content from the apps and connectors Hide

‘ -+ Add v ‘ used in this flow.

If no

~ Dynamic content Expression

’ /O ver_person

Variables

in action €3 var_person

In the If yes condition, type in Excel then select Update a Row.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/choose-entities-value.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/choose-variable-value.png#lightbox

If yes

E Choose an action b

L2 update a row

All Built-in Standard Premium Custom My clipboard

DD EEECER

Excel Online Office 3RS Common OnelDrive for Planner SharePoint Fucel Online
{Business) Lisers Data Service Business (Onelive)
Triggers Actions See more

Update a row
Lxcel Online (Business) O]

@ List rows present in a table _
[xcel Online [Business) 0]

==f Delete a row
i = ' B

= ~ - - . ™

Enter the Excel information, and update the Key Column, Key Value and PersonName fields. This will append
the name detected by the API to the Excel sheet.

If yes
E Update a row @

* Location OneDrive for Business ~
* Dacument Library OneDrive 7
" File Joognitive services/text-analytics/Reportedissues adsx 3
"Table Table1 s
" Key Column Issue v
* Key Value E Issue x
Issue
Description
PersonMName E text x
PhoneMNumber
IssueType
__PowerAppsid_
Show advanced options

Get the phone number

Minimize the Apply to each 3 action by clicking on the name. Then add another Apply to each action to
Apply to each 2, like before. it will be named Apply to each 4. Select the text box, and add entities as the
output for this action.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/yes-column-action.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/yes-column-action-options.png#lightbox

Apply to each

" Select an output from previous steps

value x

E Named Entity Recognition (v3.0) @
Apply to each 2 ek

* Select an output fram previous steps

documents x

Apply to each 3

(I Apply to each 4 veo

* Select an output from previous steps

entities x

f Add an action

Within Apply to each 4, add a Condition control. It will be named Condition 2. In the first text box, search
for, and add categories from the Dynamic content window. Be sure the center box is set tois equal to. Then, in
the right text box, enter var_phone .

Apply to each 4

* Select an output from previous steps

E entities x

E Condition 2

E category x is equal to v [var phone x

‘ -+ Add v ‘

In the If yes condition, add an Update a row action. Then enter the information like we did above, for the
phone numbers column of the Excel sheet. This will append the phone number detected by the API to the Excel
sheet.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action-phone.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/condition-2-options.png#lightbox

If yes

E Update a row 2 @

* Location COnelrive for Business b

* Document Library Onelrive e
ile Jeagnitive services/text-analytics/Reportedissues.xlsx =3

*Table Table1 hdl

* Eey Column Issue hd

* Kay Value ﬂ lssue =

Issue

Description

PersonMame

PhaneMurnber E text x

lssueType

PowerAppsid

Show advanced options ™

Get the plumbing issues

Minimize Apply to each 4 by clicking on the name. Then create another Apply to each in the parent action.
Select the text box, and add Entities as the output for this action from the Dynamic content window.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/condition-2-yes-column.png#lightbox

Apply to each

* Select an output from previous steps

value x

E Named Entity Recognition (V3.0)
Apply to each 2 e

" Select an output from previous steps

@

documents x

Apply to each 3
Apply to each 4
Apply to each 5

* Select an output from previgus steps

E entities x

i Add an action

Next, the flow will check if the issue description from the Excel table row contains the word "plumbing". If yes, it

will add "plumbing" in the IssueType column. If not, we will enter "other."

Inside the Apply to each 4 action, add a Condition Control. It will be named Condition 3. In the first text box,
search for, and add Description from the Excel file, using the Dynamic content window. Be sure the center box
says contains. Then, in the right text box, find and select var_plumbing .

E Condition 3 LR

E Descripti... b4 H conlains L {‘1’ var_plurn.,. x

-+ Add ~

In the If yes condition, click Add an action, and select Update a row. Then enter the information like before.
In the IssueType column, select var_plumbing . This will apply a "plumbing" label to the row.

In the If no condition, click Add an action, and select Update a row. Then enter the information like before. In
the IssueType column, select var_other . This will apply an "other" label to the row.

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/add-apply-action-plumbing.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/condition-3-options.png#lightbox

{A Apply to each 4

*Select an output from previous steps

PhoneNumber

IssueType

var_plumbing x

entities x
E Condition 3 -
Descripti... x contains v var_plum... x
‘ + Add ‘
If yes If no
Update a row 3 @ o0 Update a row 4

* Location ‘ OneDrive for Business v ‘ * Location | OneDrive for Business v ‘
*Document Library ‘ OneDrive v ‘ *Document Library | OneDrive v ‘
*File ‘ /cognitive services/text-analytics/Reportedissuesxlsx [ms] ‘ * File | /cognitive services/text-analytics/Reportedissues.xisx [ms] ‘
“Table ‘ Table1 v ‘ * Table | Table1 v ‘
*Key Column ‘ Issue v ‘ *Key Column | \ssue v ‘
*Key Value Issue x ‘ * Key Value Issue x ‘
Issue ‘ Issue | ‘
Description ‘ Description | ‘
PersonName ‘ PersonName | ‘

__PowerAppsid_

Show advanced options

Test the workflow

PhoneNumber
IssueType

__PowerAppsld_

wvar_other x

Show advanced options

In the top-right corner of the screen, click Save, then Test. Under Test Flow, select manually. Then click Test,

and Run flow.

The Excel file will get updated in your OneDrive account. It will look like the below.

1l Issue ﬂ Description

Next steps

Explore more sol

utions

1 Iam calling to report a plumbing issue in my apartment. 1 am in 2A. My name is Gabriel Diaz. My phone number is 425-555-0122.
2 lam calling to report a problem with our electricity. My name is Maya Robinson. And my phone number is 305-555-0122. Maya Robinsan 305-555-0122
3 lam calling to report an issue with our washer. | am in apartment 5A. My phone number is 206-555-0122. | am Anthony Ivanov. Anthony Ivanov 206-555-0122
4 My name is Monica Thomsaon. | am in 1B. My garage door is not opening. Please call me at 360-555-0122.
5 My name is Avery Howard. | am in 2B. My heater is not working. Please call me at 604-555-0122.

ﬂ PersonName ﬂ PhoneNumber ﬂ IssueType ﬂ

Gabriel Diaz 425-555-0122

Monica Thomson 360-555-0122
Terrence Howard 604-555-0122

plumbing
ather
other
ather
other

file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/plumbing-issue-condition.png#lightbox
file:///T:/uy1a/ctsj/azure/cognitive-services/text-analytics/media/tutorials/excel/updated-excel-sheet.png#lightbox

Azure Cognitive Services support and help options

3/20/2021 « 2 minutes to read « Edit Online

Are you just starting to explore the functionality of Azure Cognitive Services? Perhaps you are implementing a
new feature in your application. Or after using the service, do you have suggestions on how to improve it? Here
are options for where you can get support, stay up-to-date, give feedback, and report bugs for Cognitive
Services.

Create an Azure support request

Explore the range of Azure support options and choose the plan that best fits, whether you're a developer just
starting your cloud journey or a large organization deploying business-critical, strategic applications. Azure
customers can create and manage support requests in the Azure portal.

e Azure portal

e Azure portal for the United States government

Post a question on Microsoft Q&A

For quick and reliable answers on your technical product questions from Microsoft Engineers, Azure Most
Valuable Professionals (MVPs), or our expert community, engage with us on Microsoft Q&A, Azure's preferred
destination for community support.

If you can't find an answer to your problem using search, submit a new question to Microsoft Q&A. Use one of
the following tags when you ask your question:

e Cognitive Services
Vision

e Computer Vision
e Custom Vision

e face

e Form Recognizer

e Video Indexer
Language

e Immersive Reader

e Language Understanding (LUIS)
e QnA Maker

e Text Analytics

e Translator
Speech

e Speech service
Decision

e Anomaly Detector

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/cognitive-services-support-options.md
https://azure.microsoft.com/support/plans
https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/overview
https://portal.azure.us
https://docs.microsoft.com/en-us/answers/products/azure?product=all
https://docs.microsoft.com/en-us/answers/topics/azure-cognitive-services.html
https://docs.microsoft.com/en-us/answers/topics/azure-computer-vision.html
https://docs.microsoft.com/en-us/answers/topics/azure-custom-vision.html
https://docs.microsoft.com/en-us/answers/topics/azure-face.html
https://docs.microsoft.com/en-us/answers/topics/azure-form-recognizer.html
https://docs.microsoft.com/en-us/answers/topics/azure-media-services.html
https://docs.microsoft.com/en-us/answers/topics/azure-immersive-reader.html
https://docs.microsoft.com/en-us/answers/topics/azure-language-understanding.html
https://docs.microsoft.com/en-us/answers/topics/azure-qna-maker.html
https://docs.microsoft.com/en-us/answers/topics/azure-text-analytics.html
https://docs.microsoft.com/en-us/answers/topics/azure-translator.html
https://docs.microsoft.com/en-us/answers/topics/azure-speech.html
https://docs.microsoft.com/en-us/answers/topics/azure-anomaly-detector.html

e Content Moderator
e Metrics Advisor (preview)

® Personalizer

Post a question to Stack Overflow

For answers on your developer questions from the largest community developer ecosystem, ask your question
on Stack Overflow.

If you do submit a new question to Stack Overflow, please use one or more of the following tags when you
create the question:

e Cognitive Services
Vision

e Computer Vision
e Custom Vision

e Face

e Form Recognizer

e Video Indexer
Language

e Immersive Reader

e language Understanding (LUIS)
e QnA Maker

e Text Analytics

Translator
Speech

e Speech service
Decision

e Anomaly Detector
e Content Moderator
e Metrics Advisor (preview)

® Personalizer

Submit feedback on User Voice

To request new features, post them on UserVoice. Share your ideas for making Cognitive Services and its APIs
work better for the applications you develop.

e Cognitive Services
Vision
e Computer Vision

e Custom Vision

e Face

https://docs.microsoft.com/en-us/answers/topics/azure-content-moderator.html
https://docs.microsoft.com/en-us/answers/topics/azure-personalizer.html
https://stackoverflow.com/questions/tagged/azure-cognitive-services
https://stackoverflow.com/search?q=azure+computer+vision
https://stackoverflow.com/search?q=azure+custom+vision
https://stackoverflow.com/search?q=azure+face
https://stackoverflow.com/search?q=azure+form+recognizer
https://stackoverflow.com/search?q=azure+video+indexer
https://stackoverflow.com/search?q=azure+immersive+reader
https://stackoverflow.com/search?q=azure+luis+language+understanding
https://stackoverflow.com/search?q=azure+qna+maker
https://stackoverflow.com/search?q=azure+text+analytics
https://stackoverflow.com/search?q=azure+translator+text
https://stackoverflow.com/search?q=azure+speech
https://stackoverflow.com/search?q=azure+anomaly+detector
https://stackoverflow.com/search?q=azure+content+moderator
https://stackoverflow.com/search?q=azure+metrics+advisor
https://stackoverflow.com/search?q=azure+personalizer
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395737
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743

e Form Recognizer

e Video Indexer
Language

e Immersive Reader
e Language Understanding (LUIS)
e QnA Maker

Text Analytics

Translator

Speech

e Speech service
Decision

e Anomaly Detector
e Content Moderator
e Metrics Advisor (preview)

® Personalizer

Stay informed

Staying informed about features in a new release or news on the Azure blog can help you find the difference
between a programming error, a service bug, or a feature not yet available in Cognitive Services.

e | earn more about product updates, roadmap, and announcements in Azure Updates.
e See what Cognitive Services articles have recently been added or updated in What's new in docs?
e News about Cognitive Services is shared in the Azure blog.

e Join the conversation on Reddit about Cognitive Services.

Next steps

What are Azure Cognitive Services?

https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395743
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395740
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395746
https://azure.microsoft.com/updates/?category=ai-machine-learning&query=Azure%20Cognitive%20Services
https://docs.microsoft.com/en-us/azure/cognitive-services/whats-new-docs
https://azure.microsoft.com/blog/topics/cognitive-services/
https://www.reddit.com/r/AZURE/search/?q=Cognitive%20Services&restrict_sr=1
https://docs.microsoft.com/en-us/azure/cognitive-services/what-are-cognitive-services

External & community content for the Text Analytics

Cognitive Service

5/4/2021 « 2 minutes to read « Edit Online

Links in this article lead you to helpful web content developed and produced by partners and professionals with

experience in using the Text Analytics API.

Blogs

Text Analytics API original announcement (Azure blog)

Using Text Analytics Key Phrase Cognitive Services APl from PowerShell (AutomationNext blog)
R Quick tip: Azure Cognitive Services’ Text Analytics API (R Bloggers)

Sentiment analysis in Logic App using SQL Server data (TechNet blog)

Sentiment analysis with Dynamics 365 CRM Online (MSDN blog)

Power Bl blog: Extraction of key phrases from Facebook messages: Part 1 and Part 2

Identify the sentiment of comments in a Yammer group with MS Flow (Microsoft tech community)

Videos

Logic App to detect sentiment and extract key phrases from your text

Sentiment Analysis using Power Bl and Azure Cognitive Services

e Text analytics extract key phrases using Power Bl and Azure Cognitive Services

Next steps

Are you looking for information about a feature or use-case that we don't cover? Consider requesting or voting

for it using the feedback tool.

See also

StackOverflow: Azure Text Analytics API
StackOverflow: Azure Cognitive Services

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cognitive-services/text-analytics/text-analytics-resource-external-community.md
https://azure.microsoft.com/blog/using-text-analytics-in-call-centers/
https://automationnext.wordpress.com/tag/text-analytics/
https://www.r-bloggers.com/r-quick-tip-microsoft-cognitive-services-text-analytics-api/
https://social.technet.microsoft.com/wiki/contents/articles/36074.logic-apps-with-azure-cognitive-service.aspx
https://docs.microsoft.com/en-us/archive/blogs/geoffreyinnis/sentiment-analysis-in-usd-with-cognitive-services-text-analytics
https://community.powerbi.com/t5/Community-Blog/Text-Analytics-in-Power-BI-Extraction-of-key-phrases-from/ba-p/88483
https://community.powerbi.com/t5/Community-Blog/Text-Analytics-in-Power-BI-Extraction-of-key-phrases-from/ba-p/88487
https://docs.microsoft.com/en-us/yammer/integrate-yammer-with-other-apps/sentiment-analysis-flow-azure
https://www.youtube.com/watch?v=jVN9NObAzgk
https://www.youtube.com/watch?v=gJ1j3N7Y75k
https://www.youtube.com/watch?v=R_-1TB2BF14
https://feedback.azure.com/forums/932041-azure-cognitive-services?category_id=395749
https://stackoverflow.com/questions/tagged/text-analytics-api
https://stackoverflow.com/questions/tagged/microsoft-cognitive

	Cover Page
	Text Analytics API Documentation
	Overview
	What is the Text Analytics API?
	Language support
	Pricing
	What's new
	Text Analytics FAQ

	Quickstart
	Samples
	v3.0
	C#
	Python
	Java
	JavaScript

	v3.1
	C#
	Python
	Java
	JavaScript

	Responsible use of AI
	Transparency notes
	For Text Analytics
	For Health
	For Named Entity Recognition (NER) and Personally Identifying Information (PII)
	For Sentiment Analysis
	For Key Phrase Analysis
	For Language Detection

	Integration and responsible use
	Data, privacy, and security

	How-to guides
	Call the Text Analytics API
	Language detection
	Sentiment analysis and opinion mining
	Key phrase extraction
	Named entity recognition and PII
	Text Analytics for health
	Use containers
	Install and run containers
	Configure containers
	Use container instances
	Use kubernetes service (AKS)
	All Cognitive Services containers documentation

	Enterprise readiness
	Set up Virtual Networks
	Use Azure AD authentication

	Migrate to version 3 of the API

	Concepts
	Example user scenarios
	Named entity types
	Unicode encodings and text offsets
	Data limits
	Model versioning

	Tutorials
	Integrate Power BI to analyze customer feedback
	Text Analytics in Power Apps
	Sentiment analysis on streaming data using Azure Databricks
	Use Flask to translate text, analyze sentiment, and synthesize speech
	Extract information in Excel using Power Automate

	Reference
	Text Analytics API
	v3.1
	v3.0
	v2 (Retiring)

	SDKs
	v3.1
	.NET
	Python
	Java
	Node.js

	v3.0
	.NET
	Python
	Java
	Node.js

	v2 (Retiring)
	.NET
	Python
	Java
	Node.js
	Go

	CLI reference
	PowerShell reference

	Resources
	Enterprise readiness
	Region support
	Compliance and certification

	Support and help options
	External and community content

