

Practicing Russian Listening Comprehension Skills in Virtual Reality

Ewa Golonka, Medha Tare, Jared Linck, Sunhee Kim

PROPRIETARY INFORMATION © 2018 University of Maryland. All rights reserved.

Virtual Reality at UMD

Home of the AUGMENTARIUM virtual and augmented reality laboratory and the OCULUS-CEO funded Brendan Iribe Center

VR for language training at UMD

- Cutting-edge
 cyberinfrastructure
- 360° video / audio production
- Digital production and programming
- Applied VR/AR research

- Second language and cultural acquisition
- Science-of-learning principles
- Assessment
- Technology in education

Language learning and immersion

- For advanced skills, learners need to practice in real-world contexts
- Immersive study abroad programs are beneficial (Davidson, 2010; Dewey, 2008; Linck et al., 2009; Segalowitz & Freed, 2004; Tare et al., *in press*)
- Challenge: Exposure to certain mission scenarios may be too costly, complex, rare, or dangerous to allow real-life practice before deployment
- Solution: Virtual training

Technology affords multiple options

• Cinematic 360° film • Digital virtual worlds

- Trade-offs
 - Static vs. adjustable content
 - Ability to interact with characters and environment
 - Degree of realism (e.g., language, movement)

Why 360° cinematic film?

- Captures details:
 - o nuanced language
 - nonverbal cues (e.g., micro-expressions, eye gaze, body language)
- 360° spatial audio
- Affords viewer a sense of *presence* ("being there")

VR design goals for prototype

 Scenario inspired by intelligence agency requirement

- Immersion in language
- Target listening ILR 2 ILR 3
- Re-usable
- Supplement to instruction

Embassy cocktail party prototype

- Needs-based content development:

 Interviewed Subject Matter Expert
 Contracted native-speaking Russian actors
 Targeted, high-level content, loosely scripted
 Encouraged improvisation that fit with characters
- Designed for pedagogical exploitation

2D video 360° video camera Background conversations 0

360° video (flattened still)

Instructor focus group

Five instructors of college-level Russian

The promise of VR technology

5 Reasons to Join the Virtual Reality Learning Revolution Right Now

VIRTUAL REALITY

Will Virtual Reality Drive Deeper Learning?

As an ever-growing array of virtual reality tools hits schools, educators wonder if the technology lives up to its hype.

BUSI Virtual Reality

The Impact of Virtual Reality on Learning

Innovate

cm tech

VR gets closer to reality

Does VR technology enhance learning?

- Digital VR = mixed results
 - Physical movements (Bailenson et al., 2008)
 - Medical procedures (Sutherland et al., 2006): VR > no training, but = standard training
- 360° video = TBD (nothing published yet)
- Current study:
 - $_{\odot}$ Compare 360° video with traditional 2D video
 - \circ Outcome = L2 listening comprehension
 - Examine potential mediators

Experimental tasks

- 60-minute session:
 - Baseline proficiency test
 - Vocabulary test (pre and post)
 - \circ 8 minute video, viewed in three parts
 - 2D condition
 - 360° condition
 - Listening comprehension (after each part)
 - Experience questionnaires
 - Language history questionnaire

Measures

- Baseline proficiency (cloze test)
 - 25 blanks in 222-word text
- Listening comprehension
 - o 12 multiple-choice questions
 - Factual
 - Inferential
 - Opinion
 - Tone
- Experience questionnaires
 - Presence
 - Visual memory
 - Open-ended
- Language history questionnaire

Measures

- Vocabulary Knowledge Scale
 - \circ 20 target words
 - \circ Low frequency

(Wesche & Paribakht, 1996)

Self-report categories

- ¹ I don't remember having seen this word before.
- ^{II} I have seen this word before, but I don't know what it means.
- I have seen this word before, and I think is means _____

_____·

^{IV} I know this word. It means _____

Participants

 53 (28 female) native English speakers with advanced L2 proficiency in Russian
 360° VR condition: N = 27

 \circ 2D condition: N = 26

* Similar L2 proficiency* Younger participants in 2D condition

Condition VR 2DL2 proficiency: t = -0.16Cloze (out of 25) 13.2 (5.6) 13.4 (5.0) ns Vocabulary pre-test (out of 80) 57.2 (9.5) 56.4 (7.7) t = -0.32ns t = 4.14Age (years) 40.3 (9.5) 29.7 (8.8) p < .001

Hypotheses

Series of regression models

"VR" dummy-coded factor: VR (1) vs. 2D (0)
Bootstrap analysis to test for mediation effect

** Similar results when controlling for L2 proficiency; not reported here

Distributions of outcomes

Hypothesis 1 results: Training condition on Outcomes

Virtual Reality training condition improved <u>listening</u> <u>comprehension</u> but not incidental vocabulary acquisition

Hypothesis 2 results: Training condition on Presence

Virtual Reality condition associated with increased sense of *Presence*

Hypothesis 3 results: Training condition and Presence

Bootstrap test of mediation effect indicates:

- Direct effect of VR on listening comprehension
- No indirect (mediated) effect via presence

Discussion

- Better listening comprehension found in Virtual Reality (VR) training condition
- VR produced greater sense of *presence* among participants

"I felt like I was there - in same room"

"I found this to be surprisingly immersive, and it mirrored a real-life situation very well."

"It was like being in the room and being an active participant in the environment"

Discussion

- Even though presence did not directly benefit L2 listening comprehension, the increased sense of presence in VR is itself a positive outcome:
 - Increased realism
 - o Greater engagement
 - Higher satisfaction with training

Study conclusions

- Virtual training *can* enhance L2 listening comprehension
- Cognitive mechanisms driving the benefits of VR remain to be determined

Other uses

- Integration of speaking prompts
- Real-time assessment for listening
- Interpretation training

Acknowledgments

- Marsha Kaplan
- Laura Murray
- Richard Dabrowski

Thank you!

Ewa Golonka Associate Research Scientist egolonka@umd.edu

Jared Linck Research Scientist <u>jlinck@umd.edu</u> | @JaredLinck

www.casl.umd.edu

@umdcasl